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Figure 1: Our method can be used to animate (from left to right) shrub, tree, underwater vegetation, and vegetation scene.

Abstract

In this paper, we propose a 2D approach for real-time animation
of vegetation in 3D scenes, especially suitable for simulating wind
effects on 3D vegetation fields with densely leaved foliage. We
represent a vegetation field as view-dependent 2D billboard layers,
perform a 2D harmonic motion simulation for modeling the dy-
namics of vegetation at the first layer (closest to the viewer), and
utilize this dynamics to guide the animation of the rest of the layers
while addressing the motion effects in depth and occlusion effects.
As a result, our method can produce natural looking motions of
vegetation swaying in wind comparable with existing commercial
software, however the effort to setting up the underlying animation
model and the computational cost can be significantly reduced.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: 3D vegetation, real-time animation, 2D billboards,
harmonic motion

1 Introduction

Real-time animation of vegetation has many applications, such as
in games and simulators. For real-time applications such as games,
there are many tasks need to be performed such as AI and charac-
ter animation, so it is important to lower the computational cost of
vegetation animation while still making the animation looks visu-
ally plausible. It is a challenging problem, especially for dense veg-
etation scenes such as shrubs, tree crowns, and grass fields, which
usually have complex geometry and may consist of a large quantity
of elements (grass blades, leaves, etc.). Most existing 3D anima-
tion methods require one stage to convert the “polygon soup” of
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vegetation to a format suitable for 3D animation by setting up a
3D animation underlying model (bones, joints, etc.). Furthermore,
existing 3D animation methods mainly focus on animating single
vegetation element in 3D. Because of the huge number of elements,
animating a dense vegetation field requires tedious effort to set up
the underlying 3D animation model and high computational cost.
In this paper, we focus on realizing the essential visual effects of
natural looking motions of a dense vegetation field in real-time. We
do not aim to produce physically accurate motions. The targeted
visual effects are based on the observations from real scenes:
(1) In dense vegetation, vegetation elements may stick together and
move in groups, exhibiting harmonic motion effects such as sway-
ing and oscillating.
(2) In dense vegetation, such as tree crown whose leaves are dense
and interlacing, the wind effects occurring at different parts of veg-
etation may have some similarities.
(3) 3D vegetation may bend towards or away from the viewer and
the vegetation’s movements may propagate from the back to the
front and vice versa. We call this motion effects in depth.
(4) Occlusion effects will occur when leaves or blades overlap the
leaves or blades behind. For viewers to perceive the 3D motion of
vegetation, it is essential to model motion effects in depth and oc-
clusion effects.
In this paper, we propose an efficient 2D method to animate 3D
vegetation with densely leaved foliage under the influence of wind
in real-time, which consists of the following features:
• We convert the 3D vegetation “polygon soup” to view-dependent
billboard layers (Section 3.2) and perform a 2D simulation of har-
monic motion at a simulation plane for modeling the dynamics of
vegetation at the first layer (closest to the viewer) (Sections 3.3 and
3.4). Our method does not require tedious operations to set up an
underlying 3D animation model.
• We utilize the dynamics of the first layer to animate the rest of the
vegetation layers (Section 3.5). We realize (1) the motion effects in
depth by considering the interaction between vegetation layers as
well as (2) occlusion effects which are generated by the differences
in motions between vegetation layers. Our method does not per-
form an explicit 3D simulation. As a result the computational cost
can be reduced, which is favorable for real-time applications.
• Our method is real-time. Users can adjust the results by setting
the number of layers in the manner of level-of-detail (LOD) as well
as the properties of wind and vegetation to achieve their desired an-
imation effects on the fly.



Different from [Chen and Johan 2013], we propose an integrated
system for animation of 3D vegetation while handling the change
of viewpoint, inter-layer interaction, and motion effects in depth.
We only adopt the 2D simulation of vegetation based on harmonic
motion from [Chen and Johan 2013].

2 Related work

2.1 Modeling of vegetation

Billboard representation: Billboards are the conventional way to
represent grass [Habel et al. 2007; Jensn et al. 2009; Chen and Jo-
han 2010]. Billboard clouds, introduced by [Décoret et al. 2003],
represent geometry through a set of arbitrarily oriented billboards.
Many methods have been introduced to represent tree models us-
ing billboards, including those by [Behrendt et al. 2005], and [Bao
et al. 2009]. In general, the billboards for vegetation are determined
in advance and do not change on the fly. As a result, this method
is efficient in rendering. However much of the original geometry
information may be lost due to the simplification, thus it is not suit-
able for close-up viewing. In contrast to this conventional approach,
in our method, we dynamically create view-dependent billboards of
vegetation as the viewer moves.
Volumetric representation: [Kajiya and Kay 1989] introduced
3D texture mapping to model a furry surface. [Meyer and Neyret
1998] extended this work to slice 3D geometry into a series of thin
layers called volumetric textures. [Lengyel et al. 2001] proposed
another extension called the shell based method used mainly for
grass. [Decaudin and Neyret 2004] proposed to represent a forest
using prisms which are aperiodically mapped onto the terrain. [De-
caudin and Neyret 2009] improved this work and introduced volu-
metric billboards to present plant foliage. Although the volumetric
representation can produce realistic results, it makes the editing and
animation difficult and requires high memory cost.
3D geometric representation and LOD: The polygon is the primi-
tive to represent the geometric model of a tree. However it is tedious
to set up the underlying animation model and requires high compu-
tational cost. LOD techniques have been widely used to eliminate
minor details and they provide the possibility to render and animate
large-scale dynamic forest scenes in real-time. To represent near
and far vegetation respectively, [Perbet and Cani 2001] used chains
of line-segmented polygons and semi-transparent vertical textures
of the same orientation. [Bruneton and Neyret 2012] used 3D mod-
els and a texture rendered with view and light dependent shaders.
Particles: [Reeves and Blau 1985] used particles’ trajectories to
draw grass.

2.2 Animating vegetation in 2D images

Given a single image which consists of vegetation, the follow-
ing methods can animate the vegetation in it. [Shinya et al.
1999] proposed to animate plants in 2D images by combining
physically-based simulation with skeleton-based morphing tech-
niques. [Chuang et al. 2005] proposed to segment an image into
layers and animate the image layer by layer with a motion tex-
ture. [Chen and Johan 2013] proposed to combine 2D fluid sim-
ulation, wave simulation and grid-based image warping to animate
vegetation in 2D images.

2.3 Animating trees in 3D scenes

Physics-based methods: These methods are usually based on con-
sidering joints as structural nodes and applying explicit or simpli-
fied integration of the equations of motion. They in general require
high computational cost and lack intuitive direct control. [Stam

1997] introduced modal analysis to animate a tree. The simula-
tion is performed in the frequency domain. To reduce the com-
putational cost, the spectral method is employed. [Chuang et al.
2005] also used a spectral method by computing the motion spec-
trum of a damped harmonic oscillator to model the animation of
plants. [Habel et al. 2009] proposed a physics guided animation
using a similar spectral method as in [Chuang et al. 2005] and
beam deformation. [Diener et al. 2009] proposed to apply modal
analysis to compute a wind basis and project directional wind at
run time. A common geometrical model to represent branches is
the beam model [Chuang et al. 2005; Habel et al. 2009; Hu et al.
2012]. Moreover, [Weber 2008] presented an interactive simulation
method using a cloth dynamics model. [Zhao and Barbič 2013] pro-
posed to convert plant geometry to a format suitable for physically
based simulation.
Procedural methods: These methods are usually based on noise
functions to heuristically model the appearance of tree motions,
for example, in [Ota et al. 2003], [Sousa Hubert Nguyen, 2007]
and [Hu et al. 2009; Hu et al. 2012]. Procedural methods are com-
monly employed to generate the wind effect by using trigonometric
functions or noise [Pelzer Randima Femando, 2004; Zioma Hubert
Nguyen, 2007]. However [Akagi and Kitajima 2006] performed an
explicit fluid simulation to simulate the wind effect. [Ramraj Kim
Pallister, 2005] simulated the wind effect using a simple water wave
simulation. [SpeedTree ] is the state-of-the-art solution for vegeta-
tion animation. It has been widely used in real-time applications
such as games and simulators as well as movies. The wind effect
in [SpeedTree ] is achieved based on setting some procedures, such
as setting frequency controls how fast branches oscillate. However
the technical details are not available in the public domain.
Acceleration methods: These methods play an important role in
animating large scale vegetation scenes in real-time. The major
methods are: the LOD methods [Beaudoin and Keyser 2004], GPU
methods [Habel et al. 2009] and pre-computation and data-driven
methods [Zhang et al. 2006; Zhang et al. 2007].

2.4 Animating grass in 3D scenes

[Perbet and Cani 2001] proposed to use a procedural wind model
to animate different levels of plant representation. [Guerraz et al.
2003] extended this work to handle vegetation-object interac-
tion. [Wang et al. 2005] used the free form deformation to ani-
mate grass blades and the grass-grass collision detections were per-
formed explicitly. [Banisch and Wuthric 2006] performed a mass-
spring simulation to animate grass represented using shells. [Habel
et al. 2007] proposed to distort the texture lookups to achieve a tex-
ture based grass animation. [Jensn et al. 2009] modeled the respon-
sive grass using a spring model. [Chen and Johan 2010] proposed
to consider grass field as a continuum and shift the interactions to
the dynamics of continuum.

2.5 Summary

For trees, most methods [Shinya et al. 1999] are based on setting
up skeletons as the animation model, they are more suitable for tree
type vegetation with branches, whose motions are usually rigid. Ex-
isting 3D methods [Habel et al. 2009; Hu et al. 2012; Zhao and
Barbič 2013] to animate vegetation tend to consider each single
element such as leaf, and animate the elements explicitly in 3D.
However, for dense vegetation, setting up the underlying animation
model and performing an explicit 3D simulation require high com-
putational cost. Since the elements are dense and the elements at
the back usually attract less attention and dense vegetation is usu-
ally non-rigid, we propose a more efficient way by focusing on
the apparent parts and essential effects such as the non-rigid prop-
erty and the motion effects in depth. To reduce the computational
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Figure 2: The steps. Red: input. Green: main loop. Blue: update. Dotted boxes: the corresponding sections in the paper.

cost, instead of directly animating the vegetation in 3D, we per-
form the animation in 2D space by dynamically generating layers
of view-dependent billboards. In contrast to our proposed method,
existing 2D methods to animate 2D vegetation images layer by
layer [Chuang et al. 2005; Chen and Johan 2013] do not handle
change of viewpoint and inter-layer interaction. Thus the motion
effects in depth cannot be synthesized. We also compare our ani-
mation results with [SpeedTree ] in Section 4.

3 Our proposed method

3.1 Basic idea and steps

Basic idea: Given a “polygon soup” of a dense 3D vegetation, we
aim to generate the following natural looking motions under the in-
fluence of wind in real-time: shrub swaying in wind, tree crown
oscillating in breeze, and wave effect of grass field. In real-time ap-
plications, the realization of motion effects is more important than
the physical accuracy. Hence, we adopt a 2D approach and focus
on the “apparent parts” of a vegetation field which are closer to the
viewer and usually attract more attention from the viewer. Vegeta-
tion motion at different parts may also have similarities. Thus, we
propose to represent a 3D vegetation field using view-dependent
2D billboards. To account for wind effects, we set a 2D simulation
plane in which we perform a 2D simulation of harmonic motion.
We propose to tile and stack the simulation result to model the wind
effects in 3D space. The 2D simulation result of harmonic motion is
then applied for modeling the vegetation’s motion at the first layer
closest to the viewer. The resulting dynamics at the first layer is uti-
lized to guide the vegetation’s motion in other layers. Since we use
billboard layers, we can also easily generate the visual cues (parts of
vegetation moving in groups, layer-layer interaction and occlusion
effects) for perceiving the 3D motion effects. The motion in dense
vegetation field usually exhibit the non-rigid and harmonic prop-
erty: the vegetation’s shape is deforming or oscillating, hence we
adopt the method of 2D simulation of harmonic motion from [Chen
and Johan 2013], which is a combination of a 2D fluid simulation
and a 2D harmonic oscillator. We also extend the 2D grid-based
image warping in [Chen and Johan 2013] to simulate the motion
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Figure 3: Representation of a 3D shrub mesh. (a) The input 3D
mesh. (b) Segment the mesh into four view-dependent vegetation
layers. (c) Four vegetation layers in the viewer’s view. Different
colors indicate different layers. (d) Side view of (c).

effects in depth.
Steps: As shown in Figure 2, besides the 3D mesh (Figure 3 (a)),
another input for our method is the simulation plane’s orientation, it
defines the simulation coordinates (Figure 4). After generating veg-
etation layers (Section 3.2), we first perform the 2D simulation of
harmonic motion at the simulation plane (Section 3.3). We also
propose a procedural method to project the simulation results if
the simulation plane is not parallel to the viewing plane in order
to retain the viewing coherence (Section 3.4). This 2D simulation
results is used for modeling the vegetation’s dynamics at the first
layer, which is then utilized to guide the dynamics of other parts of
the vegetation (Section 3.5). Based on the dynamics of vegetation,
we animate the 3D vegetation model layer by layer (Section 3.6).
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Figure 4: The wind field and nine tiles of the simulation plane.

3.2 Creating vegetation layers

We segment the vegetation’s 3D “polygon soup” into clusters par-
allel to the viewing plane, and each cluster of meshes is rendered
into one vegetation layer, which forms one animation component
of our system (Figure 3). Vegetation layers are created dynamically
as the viewer moves. The 3D model of vegetation usually contains
the material or texture information for branches and leaves. We
segment out the rigid branches and trunks (based on their materials
or textures, for example the branch and leaf should have different
texture) and consider them as the background. If the branches are
soft, we can treat them as leaves. The segmentation can be obtained
via rendering by setting near and far planes based on the vertices’
depth (namely simple segmentation method).
The simple segmentation method is efficient. However it may cause
some leaves be cut and located at two different layers. We ob-
served that for vegetation with very small leaves this seam is not
obvious, hence the simple segmentation is sufficient. However for
vegetation with larger leaves, it causes noticeable artifacts. Thus,
we propose to improve the segmentation method by pre-processing
the 3D vegetation model. For the input “polygon soup“ excluding
rigid branches and trunks, we perform a breadth first search (BFS)
at each vertex to find and group all vertices that are connected with
it. The BFS is based on the neighboring information derived from
the input mesh. This group of vertices is considered as one leaf
which usually consists of one or several connected polygons. Since
the leaves and branches are segmented apart, the leaves are discon-
nected from each other, therefore performing a BFS can isolate one
leaf. If the texture coordinates (uv) are available, we choose the
vertex with the smallest u and v coordinates as the representative
(or root) of the leaf, otherwise we can choose one arbitrary vertex.
We proceed this BFS to the next unvisited vertex until all the ver-
tices are visited. After this pre-processing step, the root vertex of
each leaf is obtained. At run time, when we perform the rendering
by setting near and far planes, for each vertex, we pass one addi-
tional index array to the vertex shader which is the index to the root
of the leaf that the vertex belongs to. The near and far planes are
compared against only the root vertices, consequently no leaf is cut.
Note that the pre-processing needs to be done only once.
The number of layers usually is set based on the type of vegetation
scene and its distance to the viewer. For a large scale vegetation
scene or when the vegetation scene is near to the viewer, more veg-
etation layers are required. In our implementation, we also apply
a simple LOD method by dividing the vegetation scene into near,
mid, and far regions relative to the distances to the viewer. Users
can specify the distance of these regions and the number of vege-
tation layers used to represent each region. Inside one region, the
distances between vegetation layers is the same. In general, there is

one optimum number of vegetation layers which can achieve a nat-
ural looking animation for a vegetation scene. Beyond this number,
only small improvement in animation quality can be observed. In
practice, we always seek this optimum number of layers to achieve
the trade off between quality and cost (Section 4). After each veg-
etation layer is animated, we compose them with the background
(including the rigid branches and trunks) using alpha matting with
the help of the depth map of the vegetation scene.

3.3 2D simulation of harmonic motion

The simulation plane to perform 2D harmonic motion simulation is
defined by a user using a viewing plane by specifying one camera
setting with location, orientation and FOV properties. For example,
we can use the initial viewing plane as the simulation plane. We ob-
served that wind effects occurred at different parts have some sim-
ilarities, thus we perform a 2D simulation only on the 2D screen
space which contains the visible region of the simulation plane
when the user defines it. We then tile the rest of the simulation
plane using this 2D simulation result (Figure 4). The other tiles are
needed in case the view changes to show more by sampling method.
We adopt a directional homogenous wind field, that is we assume
the wind velocity is the same in planes parallel to the simulation
plane. In other words, it can conceptually be considered as stacking
the tiled 2D simulation result in the direction parallel to the simula-
tion plane to approximate the wind effects in 3D space.
This 2D simulation of harmonic motion models the dynamics of
vegetation at the first layer. If the viewer’s viewing plane is not
parallel to the simulation plane, a projection for the 2D simulation
plane needs to be performed to determine the dynamics of vegeta-
tion at the first layer (Section 3.4). This dynamics is then used to
approximate the dynamics of other vegetation layers (Section 3.5).
The 2D simulation of harmonic motion (based on [Chen and Johan
2013]) includes a 2D wind simulation and a harmonic oscillator.

The 2D wind simulation computes the wind’s velocity �Vswind (two

dimensions and in simulation coordinates). �Vswind is used to initi-
ate the harmonic oscillator (continuum simulation) which computes

the vegetation’s velocity �Vs (two dimensions and in simulation co-
ordinates) at the simulation plane.
2D wind simulation: We use the 2D wind simulation approach
in [Chen and Johan 2013] which applies the solver from [Stam
1999] to solve the Navier-Stokes equations in order to compute

wind’s velocity �Vswind .
2D harmonic oscillator: In general, the fluid simulation result
lacks the oscillation effects. The oscillator is required to model
these effects to mimic the swaying motion of vegetation. We con-
sider a vegetation layer as one continuum represented using a 2D
grid. We adopt the wave simulation to model the dynamics of con-
tinuum as in [Chen and Johan 2013]. Each grid cell, which is one
simulation element, represents one or some vegetation parts (such

as leaves). We consider the simulation element’s velocity (�Vs, at
the simulation plane) as the wave amplitude which is initiated by

the wind’s velocity (�Vswind ) and apply the wave equation and then
Verlet integration to compute and update the simulation element’s

velocity �Vs as in [Chen and Johan 2013].
Initiating 2D simulation: This 2D simulation and user’s initializa-
tion are all at the simulation plane. Users can set wind sources at the
boundaries of the 2D wind simulation: leftward, rightward, up or
down, to determine the wind direction. For example, if the viewer
is viewing the vegetation from top, setting leftward, rightward, up
and down motions in the simulation plane initiates the vegetation’s
leftward, rightward, frontward and backward motions accordingly.
Users can also set the frequency and strength to automatically inject
wind into the simulation.
Tiling 2D simulation: One possible solution is to use the periodic
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tion coordinates to world’s coordinates. Only one tile of simulation
plane is shown. The red viewer defines the simulation plane. (a)
Perspective view. (b) Side view.

boundary conditions to create tilable simulation. In our paper, we
adopt a method, which is commonly used to make tilable textures
as in [Chen et al. 2013], to make the 2D simulation result tilable by
offsetting the 2D simulation result, wrapping around by half, and
linearly blending the seams. The simulation results using other 2D
simulation methods such as [Ramraj Kim Pallister, 2005] can be
applied and made tilable to model the dynamics of vegetation.

3.4 Simulating dynamics of first vegetation layer

When the vegetation layers are parallel to the simulation plane, the

X and Y components (�V0xy ) of the vegetation’s velocity at the first

layer (�V0) is obtained from the 2D simulation result: �V0xy = �Vs

(Figure 5 (a)). The Z component (V0z ) of �V0 is initialized as 0 and
it is not explicitly determined by the 2D simulation. Its value will
be updated in the following projection step and its effects (motion
effects in depth) also include the propagation effects among vege-
tation layers in Section 3.5 and vertically shrinking the vegetation
elements in Section 3.6.
When the vegetation layers are not parallel to the simulation plane,
a projection is required to compute the dynamics of the first layer
(Figure 5 (b)). (1) As in Figure 6, based on the simulation plane’s

position and orientation in world’s coordinates, we project the �Vsxy ,

from the simulation coordinates to the world’s coordinates �W0xyz :

W0x = Vsx , W0y = Vsy sin θ, W0z = Vsy cos θ. (1)

(2) As in Figure 7(a), if the vegetation layers and the simulation

plane has an angle α in XZ plane, �W0’s Y component W0y does not
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Figure 7: Projection of the dynamics of vegetation from the world’s
coordinates to viewing coordinates. Only one tile of simulation
plane is shown. The red viewer defines the simulation plane. The
vegetation layers and the simulation plane (a) has an angle α in XZ
plane (top view) (b) has an angle β in YZ plane (side view).

change and we decompose �W0’s X and Z components in viewing
coordinates:

V0x = W0x cosα+W0z sinα, V0y = W0y , (2)

V0z = W0x sinα+W0z cosα.

�V0 is the vegetation’s velocity at the first vegetation layer in viewing
coordinates. We handle the cases if the vegetation layers and the
simulation plane has an angle β in YZ plane (Figure 7(b)) or an
angle in XY plane in a similar way.

3.5 Guided dynamics of other vegetation layers

To compute the dynamics for the remaining vegetation layers, one
approach is to perform the 2D simulation of harmonic motion and
compute the vegetation’s dynamics layer by layer. However, for
real-time applications such as games, less computational cost is
important. Moreover, wind effects at different layers have some
similarities. Thus, to reduce computational cost we propose to use
the vegetation’s dynamics at the first layer to approximate the ani-
mation of the remaining vegetation layers. Furthermore, the motion
effects in depth are one important visual cue for the viewer to feel
3D motion effects. Thus, we propose to simulate the layer-layer
interaction which captures the vegetation movement’s propagation
in the direction perpendicular to the viewing plane.
Firstly, we consider the case when the wind is blowing from front
to back (V0z < 0 perpendicular to the viewing plane). Based on
the observation, the vegetation at the front moves first, then, the
vegetation’s movements propagate backwards from the front to the
back. In other words, the back vegetation layers react later than

the first vegetation layer and the movements (�V ) of the back layers

can be considered as the previous movements (�V ) of the first layer.
Basically, we back track in time at the first layer to compute the

vegetation’s velocity at the other layers. �Vi represents vegetation’s
velocity at i-th layer starting from 0.
For a vegetation representation with n layers 0 to n − 1 at po-
sition A, where {L0 . . . Ln−1} are the distances to the layer 0
for each vegetation layer, the velocity of vegetation at time t is{
�V0(t)A . . . �Vn−1(t)A

}
:

�Vi(t)A = �V0(t− γi)A, (0 ≤ i ≤ n− 1), (3)

γi = Li/(−V0z (t)A + VD), (4)

where VD is the factor to control the time difference (γi) when the
back layers start to move relative to the time when the vegetation
in the first layer moves. γi is computed based on the propagation
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time in viewing direction. If t− γi does not align with the timestep
boundary, we apply a linear interpolation to compute the velocity.
VD is set to create an offset of motions exhibiting at each layer.
These motion’s differences between layers generate occlusion ef-
fects in the vegetation animation. In practice, it can be set as a small
random number, or in the case that the users want to initiate vegeta-
tion’s velocity in the direction perpendicular to the simulation plane
(in Section 3.3, wind only initiates the vegetation’ velocity parallel
to the simulation plane), it can be set as a constant number. If there
is no restriction on memory consumption, we can store the dynam-
ics of vegetation at the first layer at several time steps and use them
to evaluate Equation (3).
Memory cost reduction: In real-time applications such as games,
less memory consumption is important. Thus, we also propose a
method to reduce the memory cost. Instead of storing many pre-
vious states of vegetation, we store only the latest result of the dy-
namics of vegetation at the first layer and perform an approximate
computation as follows.
The 2D simulation method basically propagates the vegetation’s
movements in the 2D simulation plane while oscillating them. In a
dense vegetation field, the vegetation usually distributes uniformly
in all orientations. We assume one vegetation part affects nearby
part in the Z direction in the same way as it propagates its move-

ments in the XY plane. In Figure 8, consider the movement (�V0)
propagates from position A to B at layer 0 during time γ1. The

velocity of vegetation (�V0) at the position B of layer 0 is actually

the velocity of vegetation (�V0) at the position A of layer 0 at γ1
time ago. The direction of the movement’s propagation at the po-

sition A of layer 0 is
�V0xy (t)A

‖�V0xy (t)A‖ , where �V0xy (t)A is the X and Y

components of �V0(t)A. For the i-th vegetation layer, the vegetation

velocity at the position A at time t, �Vi(t)A is approximated as

�Vi(t)A = �V0(t− γi)A ≈ �V0(t)B , B = A+ γis�V0xy (t)A, (5)

where s is the wave propagation speed. γis�V0xy (t) approximates
the distance the movement travels during γi. In practice, only one
look up (sampling) operation is required to compute the dynamics
of vegetation at one position for the back layers.
In the case when the wind is blowing from back to front (V0z > 0,
along the direction perpendicular to the viewing plane), the back
vegetation layers react ahead than the first vegetation layer and the
movements of the back layer can be considered as the future move-
ments of the first layer. Based on Equation (3), γi is less than 0, thus
�Vi(t)A is approximated in the opposite direction of the movement’s

propagation at A of layer 0, − �V0xy (t)A

‖�V0xy (t)A‖ .

3.6 Animating vegetation layers

To generate the motion of vegetation, we define a uniform 2D grid
over a vegetation layer and apply inverse warping to deform it as

z
z

Figure 9: The bending along Z direction appears as vertically
shrinking.

in [Chen and Johan 2013]. At each frame, for each vegetation layer

i, we compute the amount of displacement �di of the grid’ corners

using the vegetation’s velocity �Vi in the current viewing coordi-
nates, which is obtained by bi-linear sampling from the simulation
result in Section 3.3 and using the approximation method in Section
3.5. We extend the method in [Chen and Johan 2013] to model the
movements occurring along the direction perpendicular to the view-
ing plane (either towards or away from the viewer). As in Figure 9,
these movements appear as the vegetation element is shrinking ver-
tically. This is also helpful to mimic the motion effects in depth. It
is realized by stretching the underlying 2D grid cells, since the de-
formation is based on inverse warping. We displace the grid’s cor-
ners along Y direction with λz |Viz (t)|, which models the shrinking
effect generated by the Viz .

dix = R

(
1−

(
Li

Ln−1

)2
)
mλxVix(t)Δt, (6)

diy = R

(
1−

(
Li

Ln−1

)2
)
m

(
λyViy (t)− λz |Viz (t)|

)
Δt,

R =

{
1 if every parts can move,

( l
h
)r otherwise,

(7)

where �λ is a scale factor to control the amount of displacement �di,

Δt is the simulation time step, �λ is set with respect to the grid cell’s
size, l is the distance to the root position of vegetation layer, h is
the height of the vegetation layer, and r ∈ [0, 10] is the rigidity
parameter that controls the amount of displacement with respect
to the distance to the vegetation’s root position, whose position is
fixed. We compute the bounding box of the vegetation and use
the bottom of the bounding box as the root position. On screen
space, the vegetation further from the viewer exhibits less move-
ment than the vegetation closer to the viewer. Thus we introduce(
1−

(
Li

Ln−1

)2
)
m, (0 ≤ i ≤ n − 1) to reduce the deformation,

n is the number of layers, m ∈ [0, 1] defines the maximum per-
centage to be deducted, m is greater for a larger vegetation scene.

4 Results and discussion

We applied our proposed method to animate dense 3D vegetation:
shrub, tree crown, grass field, underwater vegetation and vegeta-
tion field (Figure 1, also please refer to the supplementary video).
Our method was implemented on a desktop PC with Intel Xeon
E5520 2.27Ghz CPU, 4.0G Memory and Nvidia GeForce GTX275
GPU. In our experiments, the 2D fluid simulator (with a 64 by 64
grid [Stam 1999]) and the harmonic oscillator were implemented in
the CPU, while the rest of the steps were implemented in the GPU.
We believe shifting the whole implementation into GPU and using



Table 1: Performance measurement

No.faces No.layers FPS
80K 3(1-1-1) 70
80K 5(3-1-1) 65
50M 3(1-1-1) 40
50M 5(3-1-1) 34

a better GPU than what we used in our experiments could further
increase the frame rate. With a frame resolution of 1024 x 768, we
measure the FPS for two vegetation meshes/scenes with different
number of faces and with different number of vegetation layers as
shown in Table 1. The numbers in brackets indicate the number of
vegetation layers to represent near-mid-far regions respectively. We
observed that even if the number of faces of vegetation increases a
lot, the application is still able to achieve real-time frame rate. This
is because, with the same number of vegetation layers, the simula-
tion cost always remains constant, only the segmentation (render-
ing) cost leads to the drop in frame rate.
Our method demonstrates that for dense vegetation, using the pro-
posed simple billboard layers representation and utilizing 2D ani-
mation methods can achieve natural looking animation results. By
doing so, the simulation is only required in 2D screen space, thus
it is very efficient. Furthermore, the visual cues (motion effects in
depth and occlusion effects) play an important role to make up for
the main shortcoming of 2D methods which is the lack of informa-
tion to perceive the motion in 3D. Users can specify the distances
of the near, mid and far regions and the number of vegetation layers
used to represent each region. In our experiments, we usually use 3
(smaller vegetation) to 5 (larger vegetation scene as the last scene in
Figure 1) vegetation layers. For the last scene in Figure 1, we found
that using 5 layers can achieve the balance between the animation
quality and computational cost. We also tried to increase the num-
ber of vegetation layers, such as to 7, however the improvement in
the quality of animation is less noticeable.
Our method can achieve real-time frame rate, and as a result users
can change the values of parameters on the fly to adjust the anima-
tion. Our method does not rely on the type of input, it can handle
3D models such as low resolution polygons or in volumetric format
(vegetation layer can be generated from the slices) using the simple
segmentation method, which is usually difficult to set up underly-
ing animation structures using existing methods.
Comparisons: We evaluate our method by comparing our results
with real vegetation and the wind effects of the state-of-the-art
award-winning toolkit [SpeedTree ] (please refer to the supple-
mentary video). We observe in real vegetation’s motion and in
the [SpeedTree ] Cinema (not for real-time applications), vegeta-
tion elements may group and move together and the motion effects
in depth as well as occlusion effects also happen. Our approach can
generate these effects and simulate the harmonic motion of vegeta-
tion in wind such as swaying and oscillating.
We also compare our results with a PC game [Sword Heroes’ Fate
3 ] using [SpeedTree ] for Games. With its sophisticated rendering
LOD and wind LOD system, a large scale vegetation field can be
animated in real-time. Users can specify the behaviors of vegetation
and the properties of the procedural wind by setting the parameters
and the underlying animation model can be automatically embed-
ded. However, [SpeedTree ] for Games tends to animate each sin-
gle element in 3D, and in run-time per-vertex wind data or weighted
skeleton information need to be computed (or fetched) per-instance.
On the other hand, we demonstrate that for dense vegetation field,
focusing on the overall appearances and the apparent parts of vege-
tation’s motions is sufficient to generate natural looking animation,
while the simulation is only required in 2D screen space without
skeleton-based computation. As a result, the computational cost
can be reduced and this is important since we can allocate more

computational resources to other processing, such as AI.
Limitations: Some non-correlated vegetation elements may group
and move together. We can increase the number of vegetation layers
to reduce the undesired grouping effects. Our method may perform
less well if the vegetation has obvious rigid branches. Our method
is suitable for animating dense vegetation scene where the move-
ments of tree’s rigid trunk and branches are usually not obvious
especially when the tree is swaying in a light breeze. The proposed
billboard layer structure is simple, but it is not sufficient to cap-
ture the twisting or flipping effects of leaves under the influence of
wind in which cases the back side of leave may appear. Thus, our
method is not suitable for simulating vegetation with sparse and
very big leaves such as palm. Our method performs better for vege-
tation with smaller leaves, or dense vegetation oscillating in a light
breeze. In these cases less non-twisting artifacts can be noticed.

5 Conclusion and future work

In this paper, we have presented a 2D method to animate 3D veg-
etation in real-time. Our method is suitable to simulate dense veg-
etation under the influence of wind. We segment the vegetation
meshes into view-dependent 2D billboard layers and perform a 2D
simulation of harmonic motion at a simulation plane to model the
dynamics of the first layer. We also propose a procedural method
to project the simulation result when the vegetation layers do not
parallel to the simulation plane. Then, we utilize the vegetation’s
dynamics at the first layer to guide the dynamics of the other lay-
ers. We also consider the motion effects in depth and occlusion
effects. As a result, we can animate shrub, tree crown, grass sway-
ing in wind as well as aquarium plant swaying in water flow in
real-time. However our method does not require tedious work to
set up the underlying animation structure or performing an explicit
3D simulation. One future work is to investigate other types of 2D
animation methods besides the grid-based method to handle more
types of vegetation and effects. In addition, we want to improve the
current shading and incorporate ambient occlusion. We also plan
to animate other natural elements in 3D using 2D billboard layers,
such as smoke and cloud.
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