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Figure 1: (a) Input example texture (64×64). (b) Synthesized 2D texture (490×446). (c) Mapping the synthesized 2D texture (b) on Bunny.
(d) Synthesized 3D solid texture (based on (a)) on Bunny (no texture parameterization needed for Bunny).

Abstract

In computer graphics, textures represent the detail appearance of
the surface of objects, such as colors and patterns. Example-based
texture synthesis is to construct a larger visual pattern from a small
example texture image. In this paper, we present a simple and effi-
cient method which can synthesize a large scale texture in real-time
based on a given example texture by simply tiling and deforming
the example texture. Different from most of the existing techniques,
our method does not perform search operation and it can compute
texture values at any given points (random access). In addition,
our method requires small storage which is only to store one ex-
ample texture. Our method is suitable for synthesizing irregular
and near-stochastic texture. We also propose methods to efficiently
synthesize and map 3D solid textures on 3D meshes.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: Texture synthesis, tiling, deformation

1 Introduction

In computer graphics, texturing is a conventional way to add
details to the surface of objects, but manually creating such
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textures requires tedious effort. To overcome this issue, example-
based texture synthesis methods were proposed to synthesize a
larger texture based on a small input example texture. Exist-
ing example-based texture synthesis methods, in general, have
high computational cost because these methods usually involve
intensive matching and copying pixels/patches. Furthermore,
example-based methods usually offer only limited resolution and
lack of random accessibility [Wei et al. 2009]. Another way for
texture synthesis is Procedural texturing, which generates synthetic
texture images by computing function values instead of copying
from examples [Ebert et al. 2002]. However, it is in general dif-
ficult to design a procedure for reproducing a given specific pattern.

In this paper, we propose a simple and efficient method to
synthesize a texture based on an input example texture in real-time.
Our method has the advantages of the two approaches mentioned
above. Specifically, it consists of the following features:
(1) The proposed method is simple and easy to implement (with
only a few lines of code, see Appendix 1) and it is able to achieve
comparable results to the prior work, especially for irregular and
near-stochastic example textures. Moreover, pattern continuity
of the example input texture is also preserved in the synthesized
texture.
(2) Our method is efficient, it has no time-consuming search
operation, thus it can synthesize textures in real-time. As a result,
users can on the fly evaluate and control the synthesis results.
(3) Our method can synthesize textures directly on meshes or
points with texture coordinates. Extending our basic idea, we
also propose methods to efficiently synthesize and map 3D solid
textures on 3D meshes.
(4) Our method is memory efficient and it only requires small
storage. Only the example texture needs to be stored in memory.
(5) Our method allows random access. As such, textures can be
computed at any given coordinates.



2 Related Work

2.1 Basic techniques for example-based texture syn-
thesis

Example-based texture synthesis has been widely investigated (re-
fer to the survey in [Wei et al. 2009]). The basic techniques are:
(1) Pixel-based synthesis: The texture is synthesized by sequen-
tially fetching each pixel’s color from the best matching neighbor-
hood from the example texture [Efros and Leung 1999][Wei and
Levoy 2000].
(2) Patch-based synthesis: The texture is synthesized by assem-
bling patches rather than pixels from the input texture [Praun et al.
2000][Efros and Freeman 2001][Liang et al. 2001][Lefebvre and
Neyret 2003][Kwatra et al. 2003].
(3) Texture optimization: This approach combines the properties
of pixel and patch based algorithms. The texture synthesis prob-
lem is formulated as an optimization problem which is solved by
minimization of a energy function [Kwatra et al. 2005][Han et al.
2006][Kopf et al. 2007].
(4) Other methods: There are also methods based on statistical
analysis [Heeger and Bergen 1995][Portilla and Simoncelli 2000],
coherence search [Ashikhmin 2001][Tong et al. 2002] and high res-
olution texture synthesis [Lefebvre and Hoppe 2005] [Han et al.
2008]. These algorithms require iteratively searching and copying
pixels/patches or an optimization solver. Thus, they usually need
high computational cost. Since in general, they require synthesized
neighbor pixels/patches, they lack of random accessibility.

2.2 Tiling and deformation techniques for example-
based texture synthesis

Besides the above basic algorithms, there are some techniques
based on tiling and deformation:
(1) Tiling: Tile-based methods are very popular and have several
applications in Computer Graphics [Lefebvre and Neyret 2003][Fu
and Leung 2005][Lefebvre 2008]. Stam first introduced using
Wang Tiles for texture synthesis in [Stam 1997]. Various tiling-
based methods have also been applied in example-based texture
synthesis in [Cohen et al. 2003][Wei 2004][Ng et al. 2005][Lagae
and Dutre 2006]. To make tileable texture, there are many methods,
such as [Wei and Levoy 2000].
(2) Deformation: There are several works using deformation for
texture synthesis [Liu and Lin 2003][Liu et al. 2004][Wu and Yu
2004][Shen et al. 2006][Shen et al. 2007]. These methods, how-
ever, usually require the analysis of structural or layering informa-
tion of the example texture and re-composition of textures. Existing
deformation based methods such as [Liu et al. 2004] also exhibit
some distortions in the results. Based on observing the results in
previous work, we believe that some distortions can represent the
variations of features in some types of textures. Thus, we developed
a deformation-based method for texture synthesis.

2.3 Procedural texture synthesis

Procedural texture synthesis is a major texture synthesis method
[Ebert et al. 2002]. It uses specific algorithms to generate the ap-
pearance of natural surfaces such as wood, caustic, and marble [Per-
lin 1985]. Procedural texture synthesis methods usually require lit-
tle storage, easy to compute, random accessible and thus can gener-
ate texture color at any given coordinates. However, it is difficult to
design a procedural algorithm which can reproduce a given pattern.
Our proposed method computes the color on a point based on only
its coordinates, and only sampling operation is involved, thus it has
the same advantages as procedural methods.

2.4 Solid texture synthesis

The main advantages of solid texture are: it does not require tex-
ture parameterization on 3D meshes and it allows volumetric tex-
turing, such as the interior of wood materials. Many methods have
been proposed for solid texture synthesis (refer to the survey in
[Pietroni et al. 2010]). The existing methods [Wei 2003][Jagnow
et al. 2004][Kopf et al. 2007][Wang et al. 2010] still require itera-
tively finding and copying pixels/patches.

3 Example-based 2D Texture Synthesis

We observe that in many cases, especially for irregular and near-
stochastic example textures, we can generate a variety of similar
patterns by just deforming the input example texture. Based on this
finding, our texture synthesis method consists of the following three
main steps (Figure 2):
(1) Tiling and grids: We tile the input example texture, and name
it as tiled example texture. The same tiling arrangement is also
defined on the synthesized texture so that there is a one-to-one cor-
respondence between the tiles in the tiled example texture and the
synthesized texture. We then define 2D grids on the tiles and thus
we have a one-to-one correspondence between the grids.
(2) Deformation: The grid cell’s corners of the tiled example tex-
ture are displaced using noise. This means a grid cell in the synthe-
sized texture corresponds to a deformed grid cell in the tiled exam-
ple texture.
(3) Mapping and re-sampling: A point inside a grid cell of the
synthesized texture is mapped to a point in the corresponding de-
formed grid cell in the tiled example texture using bilinear interpo-
lation. Its texture value is sampled from the corresponding point
in the tiled example texture. Thus, our method is based on inverse
warping.

3.1 Tiling and grids

If the input texture is not tileable, we can use existing methods
such as [Wei and Levoy 2000] to create a tileable texture. Another
method is to offset the texture, wrapping around by half, and blend
the seams introduced from offsetting using the clone stamp tool of
Adobe c©Photoshop c©[Adobe c©2010] (Figure 3). Then we tile the
tileable texture. After that 2D grids are defined, the size of each 2D
grid cell (sx, sy) can be set by user, usually it is set based on the
size of the pattern in the input texture. For each point (i, j), we can
compute its coordinates within its grid cell as (u, v), 0 ≤ u, v ≤ 1
(Figure 2). Note that in terms of implementation, we do not need to
explicitly store the tiled example texture and grids in memory, we
only need to store the example texture.

3.2 Deformation

In this step, the position of the four corners (x0, y0), (x1, y1),
(x2, y2), (x3, y3) of each grid cell g in the tiled example texture
are displaced. We want to have some continuity in the displace-
ment and thus we determine the amount of displacement using Per-
lin Noise n ∈ [−1, 1]. We adopt Perlin noise since it meets the
following requirements and has been widely used to model natural
effects. (1) Noise values can be evaluated at any given coordinates.
(2) Noise values change smoothly, so smooth deformation can be
achieved. (3) Noise values can be evaluated very fast. (4) Little
memory consumptions. The noise are computed for horizontal and
vertical components: (nx, ny). The new positions of the four cor-
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Figure 2: Steps of the proposed example-based texture synthesis. Inverse warping is employed. (1) For point (i, j) in the synthesized texture,
compute its corresponding point (i

′
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) in the tiled example texture. (2) Sample the color at point (i
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) in the tiled example texture as the

color of point (i, j) in the synthesized texture.
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Figure 3: Manually creating tileable texture. (a) Non-tileable tex-
ture. (b) Offsetting the texture, wrapping around by half. (c) Blend-
ing the seams.

where λx and λx are noise factors that control the amount of dis-
placement with respect to the grid cell’s size. A threshold can be set
to restrict the amount of deformation in the horizontal and vertical
directions. Since our method can synthesize texture in real-time,
user can change the values of parameters on the fly to adjust the
synthesis results.

3.3 Mapping and re-sampling

In this step, for point (i, j) in the synthesized texture, compute its

corresponding point (i
′
, j

′
) in the tiled example texture using bilin-

ear interpolation:
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We sample the value at (i
′
, j

′
) at the tiled example texture as the

value of point (i, j) (Figures 2 and 4).

3.4 Implementation

We implement our method in GPU, the main steps contains only a
few lines of HLSL shader code (refer to Appendix 1). A 2D tex-
ture can be synthesized in real-time (refer to video). Similarly, we
can also directly synthesize 2D texture on the surface of a 3D mesh
with texture coordinates (Figure 5). Only the 2D example texture
needs to be stored. The deformation grids and sampling techniques
in Section 3 are computed on the fly in the pixel shader. Only one
sampling operation to the example texture is required per pixel. To
reduce the computational time, we can pre-compute the Perlin noise
values and store them as a texture. In this case, another noise tex-
ture is maintained. To reduce aliasing artifacts, it is sufficient to
use texture filtering methods such as mipmapping and anisotropic
filtering in shaders, since in general the deformation is not large.
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Figure 4: Mapping and re-sampling implementation. Red: one
grid cell. Blue: one tile. Yellow: corresponding tile. (a) Synthe-
sized texture with grids. (b) Tiled example texture with deformed
grids, sampling from the tiled example texture.

(a) (b) (c)

Figure 5: (a) Input 2D example texture (64×64). (b) Synthesized
2D texture (256×256). (c) Synthesized 2D texture on Bunny with
uv-coordinates.

4 Example-based 3D Solid Texture Synthesis

The proposed method can be extended from the 2D case in Section
3 to synthesize 3D solid texture.
(1) Method 1: The input is a 3D example solid texture. We ap-
ply tiling, define 3D grids, 3D deformation of grid cell’s corners,
and re-sampling based on 3D positions of points following the al-
gorithm in 2D case (Figure 6).
(2) Method 2: The input is a 2D example texture. An initial solid
texture is created by stacking the input 2D example texture then ap-
plying the algorithm in Method 1. Figure 7 shows an example of
stacking the input example texture in Z direction. Comparing with
Method 1, in terms of storage, only one 2D image is maintained.
This method is simple, however, on faces parallel to the stacking
direction, the features of the example texture cannot be well syn-
thesized (Figures 7(b) and 8(c)). This is because originally there
are no features from the example texture but only lines on these
faces parallel to the stacking direction in the initial solid texture
(Figure 7(a)). In our experiments, we observe that this method
of only stacking 2D example texture in one direction usually can
achieve visually plausible results for example textures with irregu-
lar or near-stochastic directional patterns, such as marble and wood
textures (Figures 8(a),(b)).
To synthesize features from the example texture on all face orien-
tations, our idea is to stack the input 2D example texture in three
directions (X, Y and Z directions), that is we synthesize three solid
textures and blend them to create the final solid texture. The blend-

(a) (b) (c)

Figure 6: Method 1. (a) Input 3D example solid texture
(64×64×64). (b) Synthesized solid texture (256×256×256). (c)
Synthesized solid texture colors on Bunny based on (a).
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Figure 7: (a) Stacking the input 2D example texture to create an
initial solid texture. (b) Synthesized solid texture by tiling, defor-
mation and re-sampling. (c) Synthesized solid texture on Bunny
(stacking in one direction).

ing is based on the surface’s normal of a point on mesh where the
final synthesized solid texture is applied to. The normal of one point
on the mesh is �n and �x, �y, �z refers to the X, Y and Z directions. As-
sume wx, wy, wz are the blending weights for the solid textures by
stacking the 2D exemplar in the three respective directions. If the
point’s normal is closer to direction i, wi should be larger and thus
we use the following weight function:

wi = (�n ·�i)2p, i ∈ x, y, z, (3)

where p is the parameter to control the normal directions which are
affected by each solid texture. Lower p value means each solid tex-
ture affects more normal directions. We then normalize the weights
wi and compute the color of the point as the weighted sum of the
values sampled at three solid textures. Note that we do not need
to explicitly generate the three solid textures and thus only one 2D
example texture needs to be stored and three texture sampling oper-
ations are performed. Figure 8(d) shows a synthesized result of the
stacking in three directions method.
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Figure 8: (a)(b) Synthesized textures by stacking in one direction.
(c) Synthesized texture by stacking in one direction: on faces which
are almost parallel to the stacking direction, features are not well
synthesized. (d) Blending three synthesized solid textures based on
stacking in three directions: features from the example texture can
be better synthesized on all face orientations.

Figure 10: Synthesized solid textures based on an example 3D solid
texture (Method 1) on different objects.

5 Results and Discussions

Figures 1, 5, 6, 9, 10 and 11 show various texture synthesis results
using our proposed method. We implemented our method on a lap-
top with Intel Core i7 M620 @2.67Ghz CPU, 4.0GB Memory and
Nvidia NVS3100M GPU on the DirectX 9.0c platform. With pre-
computed Perlin noise, 2D textures can be synthesized at 150FPS,
and 2D or 3D textures (Methods 1 and 2) can be directly synthe-
sized on a mesh (80000 faces) at 120FPS. The frame rate drops
to half if we compute Perlin noise in real-time in GPU. In terms of
storage, only one 2D (or 3D) example texture is maintained in mem-
ory. We tested our method using the texture categorization based on
[Liu et al. 2004] (Figure 9). We do not show the results of regular
textures since it is sufficient to synthesize them by tiling the input
example. From the experiments, we found that the details and cur-
vature of a 3D mesh usually help to enhance the visual impression
of the synthesized textures. Please see the video and supplemental
material for more results.
Comparison with other 2D texture synthesis methods Our ap-
proach provides a simple and efficient solution to 2D texture syn-
thesis. No iteratively finding and copying pixels/patches are re-
quired. The results are comparable to the existing methods. Based
on the results in the papers and websites of [Efros and Leung
1999][Wei and Levoy 2000][Efros and Freeman 2001][Ashikhmin
2001] and [Cohen et al. 2003], we found that some unnatural dis-
tortion artifacts and discontinuities are noticeable. Compared with
[Liu et al. 2004] and [Kwatra et al. 2005], our method can achieve
results with similar quality. Tiling based methods [Cohen et al.
2003][Wei 2004] and [Ng et al. 2005] are generally based on cre-
ating Wang tiles to reduce the repetition artifacts. However in the
results, some pattern discontinuities are noticeable. On the other
hand, pattern continuity of the example input texture is preserved in

Figure 11: Synthesized solid textures based on stacking a 2D tex-
ture (Method 2) on different objects.

(a) (b) (c)

Figure 12: Synthesized solid texture on Bunny. (a) Prior work
[Kopf et al. 2007]. (b) Method 1. (c) Method 2.

our results. Deformation based methods, such as [Liu et al. 2004]
can generate good quality results, but it requires texture analysis
and user assistance for identifying and adjustment of lattices (1 to
20 minutes based on their paper). On the other hand, our method
can generate comparable quality and it only requires sampling op-
erations, very little user assistance, it is simpler and very suitable
for real-time applications. In addition, we can compute the texture
color at any given coordinates, there is no restriction on the size of
the synthesized texture.
Comparison with other solid texture synthesis method Our
method can synthesize results comparable to [Kopf et al. 2007]
(Figure 12). However our method is simpler and more efficient,
it has no time-consuming searching and copying operations. Fur-
thermore, our stacking based approach only needs to store one 2D
example texture in memory.
Limitations Our technique may perform less well for the type of
texture with too much color variations, since such color patterns
may become visually repetitive in our results (Figure 13(a)). Our
method is also not suitable for textures with regular shapes such
as straight lines and smooth curves since deformation will deform
these features. However, for irregular and near-stochastic textures,
our method is able to generate good quality results. To reduce un-
wanted stretching/distortion artifacts, we can perform deformation
only in selected directions. We also provide parameters to limit the
amount of deformation.
For method 2 of the example-based solid texture synthesis, three
solid textures are blended. For faces whose normals are parallel



to direction i, (i ∈ X,Y,Z), the solid textures stacking in directions
other than i, do not contribute to the color of these faces which
means no blending is performed for these faces. This will cause
discontinuity along the shared edge of two faces whose normals are
parallel to two of X, Y and Z axes (Figure 13(b)). Furthermore, the
simple linear blending method also introduces some multiple expo-
sure artifacts at the blending area. In our experiments, we observe
that such artifacts will be much less noticeable for the type of tex-
ture with less color variations. However, since method 2 does not
require texture parametrization for 3D meshes and it only needs to
store one example texture in memory, it is very practical for solid
texturing 3D meshes and very suitable for real-time applications.

(a) (b)

Figure 13: Limitations of our method. (a) Synthesizing texture with
many color variations. Left: Input example. Right: Synthesized
2D texture. (b) Synthesized 3D solid texture on Bunny based on
stacking the input example texture.

6 Conclusions and Future Work

In this paper, we have proposed a simple and efficient method for
texture synthesis that does not require iteratively finding and copy-
ing pixels/patches. The proposed method is based on tiling, de-
formation, and re-sampling techniques and is suitable for real-time
synthesis of 2D textures and 3D solid textures. Our method only
requires small storage and it allows random access. As shown, our
results are comparable to the state-of-the-art texture synthesis meth-
ods. We have also presented a method to synthesize a 3D solid tex-
ture based on a 2D example texture. As future work, we would like
to apply this method to synthesize bump and displacement maps.
We also would like to reduce the unwanted repetitive effect such
as the one in Figure 13(a) using some post processing or recoloring
techniques. Another interesting future work is to let users to control
the placements of certain features.
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Appendix 1. Sample HLSL code

//For point (i, j) in the synthesized texture,
//find the four corners (xy[0] to xy[3]) of the grid cell
//that (i, j) belongs to. Grid_Size is the grid size.
xy[0] = floor(float2(i, j) / Grid_Size) * Grid_Size;
xy[1] = xy[0] + float2(0 , Grid_Size.y);
xy[2] = xy[0] + float2(Grid_Size.x, Grid_Size.y);
xy[3] = xy[0] + float2(Grid_Size.x, 0 );

//Find the uv coordinates for point (i, j).
u = (i - xy[0].x) / Grid_Size.x;
v = (j - xy[0].y) / Grid_Size.y;

//Displace the four corners (xy[0] to xy[3]) in tiled example
//texture using perlinNoise which is generated based on
//[Perlin 1985], lambda is the 2D noise factor.
for (int t = 0; t < 4; t++) {
xy_new[t] = xy[t]
+ perlinNoise(xy[t]) * lambda * Grid_Size;}

//Bilinear interpolation to compute the corresponding
//point for (i, j) in the tiled example texture.
ij_new = (1 - v) * ( (1 - u) * xy_new[0] + u * xy_new[3] )

+ v * ( (1 - u) * xy_new[1] + u * xy_new[2] );

//Sample the tiled example example texture for the value
//at ij_new and assign the value to point (i, j).
ij.color = tex2D(INPUT_EXAMPLE_TEXTURE, ij_new);



Input example texture Synthesized 2D texture Synthesized 2D texture on Bunny Synthesized 3D solid tex-
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stacking the input exam-
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Figure 9: Results of the proposed example-based texture synthesis.


