
Real-Time Continuum Grass

Kan Chen∗

Nanyang Technological University, TQ Global Ltd

Henry Johan†

Nanyang Technological University

ABSTRACT

Simulating grass field in real-time has many applications, such as
in virtual reality and games. Modeling accurate grass-grass, grass-
object and grass-wind interactions requires a high computational
cost. In this paper, we present a method to simulate grass field in
real-time by considering grass field as a two dimensional grid-based
continuum and shifting the complex interactions to the dynamics of
continuum. We adopt the wave simulation as the numerical model
for the dynamics of continuum which represents grass-grass inter-
action. We propose a procedural approach to handle grass-object
and grass-wind interactions as external force that updates the wave
simulation. The proposed method can be efficiently implemented
on a GPU. As a result, massive amounts of grass can interact with
moving objects and wind in real-time.

Keywords: Real-time animation, grass, continuum simulation.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation, Virtual reality

1 INTRODUCTION

In recent years, there has been an increasing demand in interactive
virtual environments. Real-time simulation of a large scale dynamic
and believable virtual environment provides users with an immer-
sive feeling. Grass field is an important component of outdoor en-
vironment and it is required in many applications, such as virtual
reality, games and simulators. Using texture mapping and model-
ing techniques, we can realize the visual complexity of a grass field.
However, in many real-time applications, grass field is still lack of
interactivity. For example, in many of the recent games, grass still
cannot interact with objects and penetrate through the objects.

A grass field will look more believable if we also simulate the
countless blades of grass interacting with objects and wind. For in-
stance, grass should bend and recover in response to the passing car
and wind. However, because of the huge number of grass, the dy-
namics and the complex physical interactions remain challenges for
grass animation. Performing an explicit physics simulation of the
grass can produce realistic animation, however the computational
cost is extremely high. For example, to simulate an object mov-
ing in a dense grass field, we have to perform a large number of
grass-object and grass-grass collision detections and responses. Up
to now, there has not been much work addressing real-time solution
for such application.

In this paper, we propose a method to simulate the interactions
and natural effects of a large scale grass filed in real-time for vir-
tual reality and games. Based on the grass in real-life, we focus
on simulating the essential effects and behaviors of grass, such as
bending and recovery. Grass should bend and recover in response
to passing objects and wind, and the bending effect propagates to
the neighboring grass. This propagation is mainly caused by grass-
grass collision. Moreover, grass is hard to break and stretch but
free to move in all directions. Other than the physical properties of

∗e-mail: chenkan@pmail.ntu.edu.sg
†e-mail: henryjohan@ntu.edu.sg

grass, the behaviors of grass also depend on how objects and wind
interact with them. For example, grass will likely bend according
to the moving direction of the objects during the interaction. The
grass properties as well as the objects and wind behaviors are con-
sidered in the design of our model.

In many real-time applications, the realization of the effects of
grass is more important than the physical accuracy. Thus, we pro-
pose a novel real-time method that combines a simple dynamic
simulation and a procedural method instead of performing an ex-
plicit physics simulation. Our method to simulate grass integrates
four types of interaction: grass-grass, grass-terrain, grass-object
and grass-wind. The proposed method has the following features:

(1) Grass field is treated as a 2D grid-based continuum, which
stores the grass’ status (bending angle and bending velocity). The
flow inside the continuum is computed based on wave simulation.
The propagation property of the wave represents the grass-grass in-
teraction. We formulate a forward kinematics method to bend and
recover the grass. The grass-terrain collision is tested during the
bending process.

(2) We propose a procedural method to handle the grass interac-
tions with objects and wind. This method updates the continuum
simulation (wave simulation) by directly setting the status of grass
colliding with the objects and wind.

(3) Animators can control the simulation effects by setting the
parameters of the wave propagation and the behaviors of the ob-
jects and wind.

All computations of our method are performed in GPU. Our pro-
posed method provides a simple and effective framework that en-
ables a real-time animation of grass field. The simplicity and gen-
erality of our method allowed it to be a practical solution for grass
simulation. The proposed method has been integrated into a game
engine and one of the results is shown in Figure 10.

2 RELATED WORK

In this section, we review some related work in grass modeling and
animation.

2.1 Modeling of grass

Modeling of grass has been widely investigated. The major tech-
niques to model a grass scene are as follows.
Particle system Reeves and Blau [19] used particles that move
along parabolic trajectories to draw grass. The rendering cost is
too high to be suitable for real-time applications.
Volumetric representation Kajiya and Kay introduced 3D tex-
ture mapping called ”texel” to model furry surface [11]. Meyer
and Neyret [12, 13] extended this work to use the z-buffer tech-
niques to render 3D geometry that is sliced into a series of thin
layers. A further extension called shell-based method used specif-
ically for rendering fur and grass has been proposed by Lengyel et
al. [10], Bakay and Heidrich [1], Banisch and Wuthric [2]. The
shell-based method is based on geometry layers mapped with semi-
transparent textures and sliced parallel to the terrain. Pelzer [16]
proposed to model grass by crossing several polygons with the con-
figuration that looks like stars. This configuration can ensure good
visual quality independent of the current line of sight. Decaudin
and Neyret [5] proposed to use volumetric textures and aperiodic
tiling. The forest is represented using a set of edge-compatible
prisms containing forest samples which are aperiodically mapped

Table 1: Comparison with other grass animation methods.

Method Wind Object Grass Terrain Summary

Perbet and Cani [17] Yes No No No Control using wind primitives.

Bakay and Heidrich [1] Yes No No No Control using wind vectors.

Guerraz et al. [7] Yes Yes No No Animate blade by blade independently for nearby grass using control primitives

and store the information of all bended grass.

Ramraj [18] Yes No No No Animate using a simple wave simulation.

Wang et al. [20] Yes No Yes No Perform free-form deformation and explicit collision detection.

Banisch and Wuthric [2] Yes No Yes No Simulate using a mass-spring model.

Habel et al. [8] Yes No No No Distort grass texture lookup based on a procedural or hand-crafted texture.

Orthmann et al. [15] Yes Yes Yes No Simulate using a spring model. Refine the simulation mesh of every possibly

affected grass during runtime.

Our method Yes Yes Yes Yes Animate using continuum simulation and procedural method.

onto the ground. This method can also be used to model grass. In
general, the volumetric representation is efficient in rendering but
not easy to perform animation.
3D geometric representation Wang et al. [20] used skeleton-lines
to model grass blades. The number of skeleton-lines per blade dy-
namically decreases when the distance from the viewer increases.
There are some work using the level of detail scheme to combine
3D geometry representation, volumetric representation and 2D tex-
ture of grass. Perbet and Cani [17] used chain of line-segmented
polygons for 3D representation of grass and semi-transparent ver-
tical textures of same orientation for volumetric representation of
grass. Guerraz et al. [7] used many billboards for 3D represen-
tation of grass and semi-transparent vertical textures of different
orientations for volumetric representation of grass. Boulanger et
al. [4] used a textured semi-transparent quadrilateral strips for 3D
representation of grass and semi-transparent horizontal and vertical
slices of textures for volumetric representation of grass. The 3D ge-
ometric representation of grass can model grass in details, however
the computational cost for rendering and animation is high.
Other methods Habel et al. [8] and J. Orthmann et al. [15] used
only the conventional billboards to model grass. Deussen et al.[14]
used lines and points to represent grass.

2.2 Animation of grass

There are several work for modeling grass-wind interaction. Perbet
and Cani [17] proposed a procedural animation controlled by
wind primitives. Bakay and Heidrich [1] created an animation
by translating the vertices of the shell grass according to a wind
vector. Wang et al. [20] combined free form deformation and
explicit grass-grass collision detections. Endo et al. [6] proposed a
precomputed physical model using dynamic constraints. Banisch
and Wuthric [2] used a mass-spring system where the masses and
springs are attached to the shell layers. Habel et al. [8] achieved
a texture based animation by distorting the texture lookups.
The conventional way to generate wind effects is by using the
combination of sin and cos wave plus noise as in Pelzer [16] and
Zioma [22]. Ramraj [18] simulated the wind effects using a simple
water wave.

Most grass animation techniques can achieve visually pleasing
results, but they only addressed grass-wind interaction. For
grass-object interaction, Guerraz et al. [7] presented a method
to simulate the interaction between a vegetation and a moving
object. Most recently Orthmann et al. [15] proposed a GPU-based
approach to model responsive grass. They handle grass-object
collision by passing the vertices of grass to the geometry shader
and performing the simulation using a spring model.

Most animation approaches do not consider that different types
of grass have different properties, different types of objects and
wind will create different impact on grass. We take into account
all these factors. We integrate all interactions into a single model
instead of the previous approaches that model wind and object

interactions separately. Compared with other methods, our
continuum grass can simulate larger scale of grass field and
we address all the grass-grass, grass-object, grass-terrain and
grass-wind interactions. Table 1 shows the comparison of our
method with other methods.

2.3 Hair and fur

There are similarities between hair, fur and grass. The techniques
such as mass-spring, free form deformation and particle system
have been used in simulating hair. Bertails et al. [3] gave an
overview of hair simulation. Hadap and Thalmann [9] introduced a
novel method to model dynamic hair as a continuum by performing
a particle-based fluid simulation for lateral hair movement. Parti-
cles and hair strands are embedded in a fluid continuum. The hair-
hair, hair-body and hair-air interactions are handled by using fluid
dynamics.

3 MODELING A GRASS FIELD

To model a grass field, we have to model a grass and determine how
to distribute grass in the terrain.

Modeling of grass There are two approaches to model grass:
modeling a single blade of grass and a group of grass. For a single
blade of grass, the conventional geometric models are cylinders and
polylines. For a group of grass, the conventional way is to use bill-
boards as the geometric model. Based on the observation that grass
always forms clusters, we treat a cluster of grass as one simulation
element and adopt the billboard representation (Figure 1). By doing
so, the computational cost can be reduced, which is important for
real-time applications.

Our billboard grass is composed of different number of seg-
ments to represent different types of grass. For stiff grass (shrub-
like grass) and short grass, one-segment billboard (Figure 1(a))
is used. This is because the shape of the grass does not deform
much when bending. On the contrary, for soft grass and tall grass,
multiple-segment billboard is used (Figure 1(b)). This representa-
tion can model more complex deformation of grass. To make our
method more efficient, we also consider the level-of-details (LOD)
for grass. That is, for grass far away from objects and camera, we
use the one-segment billboard. Based on the simulation results, we
bend the segments of the billboard (Figure 1). The simulation pro-
cess will be discussed in details in Section 4. The height of grass
(billboard) is determined based on the types of grass. We generate
a random height offset for each grass to make the grass field looks
natural.

Distribution of grass It is not efficient to consider the entire
terrain as one huge simulation region. Therefore, we divide the
whole terrain into mp × np patches of grass. Each patch is further
divided into mg × ng cells and we randomly place one cluster of
grass (one billboard) within each cell.

}}}

g

g

(a) (b)

Figure 1: Object interacts with (a) a one-segment billboard grass (stiff
grass and short grass) and (b) a multiple-segment billboard grass
(soft grass and tall grass).

4 REAL-TIME GRASS SIMULATION

In this section, we present a method to simulate grass-grass interac-
tion. The details on how to incorporate the grass-object and grass-
wind interactions into the simulation is explained in Section 5.

4.1 Basic idea and simulation steps

We want to achieve the following effects which are essential to a
grass field: When moving objects and wind enter a grass field, they
collide and bend the grass. The grass that collides with the objects
and wind will bend first. The grass-grass interaction occurs. The
bending is then propagated to other grass that is away from the ob-
jects and wind. After the objects and wind passed, a track will be
left on the field. The bended grass will eventually stop bending and
start to recover (it may sway) and finally recover to a rest pose.

To achieve the above effects, we propose to model a grass field
as a continuum. The interaction between grass is actually the trans-
fer of energy, hence the grass-grass interactions are modeled as the
energy flow in a continuum and the grass-object and grass-wind in-
teractions are modeled as the external force to update the continuum
simulation (details in Section 5). We adopt the wave simulation as
the numerical model for the dynamics of continuum. Furthermore,
those effects of grass field (refer to the above effects of grass) have
similarities with the behaviors of wave: The initial amplitudes of
wave are set at some locations. The amplitudes are then propagated
to nearby locations. During the propagation, the amplitudes will
eventually stop increasing and start to decrease (the wave may os-
cillate), and the wave will finally recover to a rest state. Thus, we
adopt the wave model and mimic those essential effects of grass
field using the wave simulation.

We treat a patch of grass (Section 3.2) as a continuum and per-
form the simulation patch by patch. That is, we perform the simu-
lation on 2D cells. Each cell corresponds to one cluster of grass and
stores two types of data: bending angle (the angle θ at the bottom
segment) and bending velocity (the angular velocity ~ωg) (Figure 1).
The bending angle θ is a scalar value that shows how much the
cluster of grass has bended. Increasing θ means the cluster of grass
is bending. When θ is approaching to zero, it means that the grass
is recovering. The bending velocity ~ωg is a 2D vector. The magni-
tude of ~ωg is the bending angular speed of this cluster of grass. The
direction of ~ωg is its bending direction (this is 2D with respect to
the 2D plane of the simulation cells).

The simulation is performed as follows:
(1) Simulation region management: Manage the patches of

grass where the continuum simulation is performed (Section 4.2).
(2) Interaction with objects and wind: This process includes

collision detection and response. We detect the grass that collides
with objects and wind. Then, we update the bending velocity ~ωg of
the grass. This step will be discussed in details in Section 5.

(3) Direct bending process: This step processes the bending ef-
fect caused by grass-object and grass-wind interaction. We bend

the clusters of grass colliding with objects and wind by updating
the bending angle θ (Section 4.3).

(4) Propagation process: This step simulates the bending effect
caused by grass-grass interaction and the recovery effect of grass.
We achieve these effects by simulating the propagation of values
(θ , ~ωg) inside the 2D cells (Section 4.4).

(5) Animating cluster of grass: This step illustrates how we use
the values (θ , ~ωg) to bend and recover one single cluster of grass
during rendering (Section 4.5).

4.2 Simulation region management

Simulation regions are patches of grass in which we allocate mem-
ory and perform simulation. In some real-time applications such as
games, the amount of memory to simulate a grass field might be
limited. To cope with this issue, we propose the following method
to manage the simulation regions.

(1) When an object entered the 2D cells of a patch of grass and
this patch of grass is not in the simulation regions, we add this patch
into the simulation regions.

(2) When the distance from the current position of the camera to
the center of one patch of grass is less than a threshold d and this
patch of grass is not in the simulation regions, we add this patch
into the simulation regions. The threshold d can be set based on the
camera’s settings.

(3) If the memory consumption reaches the specified upper
bound (in our experiment: 225 patches, 180 feet by 180 feet per
patch), we release the memory of the patch which is furthest from
the current location of the camera and allocate it to the newly en-
tered patch.

1

2

3

4

5

6

7

8

9

Object’s

current location
63

Figure 2: The dark small rectangles represent the moving object at
some instances of time. We allocate the memory for the patches of
grass no. 2, 3, 5, 6, 8 and 9. The circles represent the affected area
caused by the object at current location.

We increase the size of the 2D cells of one patch as ma × na,
where ma ≥ mg and na ≥ ng, to overlap each other (Figure 2).
This is to ensure that when an object is crossing to the neighbor-
ing patches of grass, the simulation is continuous at the boundary.
The size of the extended 2D cells of one patch (ma × na) should
be sufficient enough to record all potential interactions on the patch
including the interactions which are caused by objects outside the
original patch (mg ×ng).

In Figure 2, we can easily see that the object is currently located
inside the extended 2D cells of patches no. 5, 6, 8 and 9. Thus, we
allocate memory and perform simulation for patches no. 5, 6, 8 and
9. The patch-by-patch simulation can be done in any order. Note
that the object is not in the original patches no. 5, 6 and 9, however
we still simulate the interaction of the object on patches no. 5, 6
and 9. By doing so, the interaction is propagated from patch no. 8

to patches no. 5, 6 and 9. The patches no. 2 and 3 are the patches
of grass where the object has passed. We continue to perform the
simulation on these patches since the effects of grass-object inter-
action might still be noticeable in these patches.

Inside the simulation regions, besides grass-object interactions,
we also perform grass-wind simulation for all the patches that are
near to the camera (based on the same distance checking using d
mentioned previously). For other patches that are far away from
the camera (maybe inside or outside the simulation regions) we use
only one patch of grass-wind simulation result to tile these patches.
The grass-wind simulation will be discussed in details in Section 5.

4.3 Direct bending process

After the collisions are handled (details in Section 5), we have a new
bending velocity ~ωg for the clusters of grass colliding with objects
or wind. For simplicity, we omit the index of the cells. The direct
bending process increases the bending angle θ of each colliding
grass by the magnitude of the bending velocity

∥

∥~ωg

∥

∥. This new
bending angle is later used to bend the bottom segment of grass.
We denote the grass’ bending angle at simulation time ts as θ(ts),
so for each simulation time step ∆ts, the new bending angle of one
cluster of grass that collides with objects and wind is

θ(ts +∆ts) = θ(ts)+
∥

∥~ωg

∥

∥∆ts. (1)

To avoid the intersection between the bottom segment of grass and
the terrain, a maximum bending angle is calculated based on the
height and slope of the terrain and the bending direction of the
grass.

4.4 Propagation process

The grass-grass interaction (the bending and recovery of grass) is
computed as a wave propagation inside a continuum (2D cells). In-
stead of performing the collision detections among grass, we propa-
gate the values (θ , ~ωg) stored in each cell to achieve the consecutive
bending and recovery of grass. The values (θ , ~ωg) are propagated
from one cell to another cell. This implies that a cluster of grass
is bending another cluster of grass. The values stored in cells are
indeed energies. In other words, we propagate the energy in contin-
uum.

The energy of the continuum gained during the grass-object and
grass-wind interactions will eventually go to zero after the energy
flows inside the continuum. This energy damping effect of wave
mimics the real world phenomenon. In real world, the friction be-
tween grass-grass, grass-air and grass-terrain makes the grass even-
tually stop moving and recover to its original state.

We treat the values stored in each cell, the bending angle and the
bending velocity, as the amplitude of 2D waves. The wave func-
tions we used are the same as in [21]. For each simulation time ts,
aθ (ts) and a~ωg

(ts) are the accelerations of the wave propagation:

aθ (ts) =
∂ 2θ

∂ t2
s

= cθ (ts)
2(

∂ 2θ

∂x2
+

∂ 2θ

∂y2
), (2)

a~ωg
(ts) =

∂ 2 ~ωg

∂ t2
s

= c~ωg
(ts)

2(
∂ 2 ~ωg

∂x2
+

∂ 2 ~ωg

∂y2
). (3)

cθ and c~ωg
are the wave’s propagation speed. For one cluster of

grass, the c values control the propagation speed of its θ and ~ωg to
its neighbors. For example, a stiff grass will cause the neighboring
grass to react faster so its cθ and c~ωg

are large. cθ is also set based

on the grass’ bending speed
∥

∥~ωg(ts)
∥

∥ at ts:

cθ (ts) = c0 + µ
∥

∥~ωg(ts)
∥

∥ . (4)

c0 is the base wave propagation speed for θ . When one cluster of
grass has the bending velocity of ~ωg(t), µ controls how its velocity

contribute to the changing and propagation of its θ . For example,
grass with faster bending velocity propagates θ faster to its neigh-
bors.

Based on aθ (ts) and a~ωg
(ts), we apply the verlet integration

method to compute the new status of grass. This method is sim-
ple to implement, accurate and stable to model continuum dynam-
ics. We denote the values (θ , ~ωg) at each simulation time ts as
(θ(ts), ~ωg(ts)), for each simulation time step ∆ts, we have:

θ(ts +∆ts) = (2−λθ)θ(ts)− (1−λθ)θ(ts −∆ts)

+ aθ (ts)(∆t2
s), (5)

~ωg(ts +∆ts) = (2−λ~ωg
)~ωg(ts)− (1−λ~ωg

)~ωg(ts −∆ts)

+ a~ωg
(ts)(∆t2

s), (6)

where λθ and λ~ωg
are the damping parameters to control how much

the amplitude of wave is decreased when the wave propagates. If λ
is zero, it means the wave propagation will never stop.

By using the wave simulation, we provide a convenient way to
control the grass animation. We can tune the affected area of grass-
grass interaction by setting the λ (smaller λ : large area, greater λ :
small area) and control how fast a grass propagates the bending by
setting the c (smaller c: slow propagation, greater c: fast propaga-
tion). In our experiments, c0 is in the range [1, 10], µ is in the range
[0, 1.5], c~ωg

is in the range of [1, 10], λθ and λ~ωg
are in the range

of [0.01, 1].

4.5 Animating cluster of grass

The animation for a single cluster of grass are the bending and
the recovery process. In the above continuum simulation step, the
bending angle θ and the bending direction ~ωg have been calculated.
Based on the values stored in the cells, we bend or recover the bill-
boards of cluster of grass when we render it. We explain our method
by using tall grass as an example. Since the grass is tall, we adopt
the multiple-segment billboard representation of the grass and we
assume that the object hits the bottom segment of the billboard.

Figure 3: The bending process of one cluster of grass. Grass bends
from the bottom to top.

Based on the observation that when the collision happens at the
bottom of grass, the bottom bends while dragging the top to bend
(Figure 3). A physics-based simulation has been done to verify
this effect. We use θ as the bending angle for the bottom segment
of the billboard. Then, we propagate θ from the bottom segment
to the upper segments of grass. In other words, the upper seg-
ments bend later than the bottom and the bending angles of the
upper segments can be considered as the previous θ of the bottom
segment. For a cluster of grass with n segments {L0 . . .Ln−1} at
cell P, the bending angles of the segments at rendering time tr are
{θ0(tr)P . . .θn−1(tr)P}:

θi(tr)P = θ0(tr − γi)P, (0 ≤ i ≤ n−1) (7)

where γi is the factor to control the time of the upper segments to
start to bend relative to the time when the bottom segment bends. γ
for the bottom segment (γ0) is zero. If the segment is closer to the

top, it has greater γ .
If memory is not an issue, we store the bending angles θ0 at sev-

eral time steps and use them to evaluate Equation 7. However, for
applications such as simulators or games, less memory consump-
tion is important. Therefore, we also propose the following alterna-
tive. We do not store many previous states of grass and only pass
the latest result of the continuum simulation to the rendering pro-
cess. We then perform an approximated computation as follows.

Q

P

Q

P

tr 1
+tr

Figure 4: During time γ1, the θ value propagates from P to Q. The θ
value also propagates from the bottom to the upper segment at P.

Consider the wave propagation from cell P to cell Q during time
γi. The θ value stored in the cell Q is actually the θ value of the
grass at P at γi time ago (Figure 4). The direction of the wave prop-

agation at P is the bending direction (
~ωo

‖~ωo‖
) of the grass at P. For

the i-th segment of the grass at P, θi(tr)P is approximated as

θi(tr)P = θ0(tr − γi)P ≈ θ0(tr)Q, (8)

Q = P+ γicθ (tr)P

~ωo

‖~ωo‖
(9)

where cθ (tr)P is the wave propagation speed at cell P and is com-
puted using Equation 4. γicθ (tr)P approximates the distance the
wave travels during γi. In our experiments, γi is in the range [0,

π
2‖~ωo‖

]. Since θ is damped during the wave propagation (Section

4.4), we get the damped value of θ0(tr − γi)P. This gives the side
effect of the damping of energy when bending the grass from bot-
tom to top, due to frictions between grass-grass and grass-air. The
limitation of this approach is that when other objects or wind inter-
acts with the grass at the cell Q, then we may not get the correct
previous θ value. However, the experimental results show that no
visual defects are encountered.

The bending of billboard is in 3D. Using the forward kinematics
(Figure 5), we move the vertices of the segment of the billboard

along the bending direction (
~ωo

‖~ωo‖
). If the θ value is less than zero,

we bend the cluster of grass in the opposite direction of
~ωo

‖~ωo‖
with

angle ‖θ‖. To avoid the upper segments of the grass colliding with
the terrain, we compare the height of the segment with the height
of the terrain.

0

L3

1

2

3

L0

L1

L2

Figure 5: Based on θ and L (the height of the segment), apply the
forward kinematics to bend a cluster of grass.

For grass’ recovery, we perform the similar computation as
grass’ bending. The lower parts recover first while dragging the

upper parts to recover. Generally, the recovery of the upper parts
may not be delayed much, therefore in the recovery process, we
use smaller values for γi in Equation 7.

5 INTERACTION WITH OBJECTS AND WIND

The grass-object and grass-wind collision directly update the bend-
ing velocity of the grass that collides with objects and wind. First,
we describe grass interacting with moving objects, such as moving
cars (Sections 5.1, 5.2). Then, we introduce grass interacting with
wind (Section 5.3).

5.1 Collision detection

This process performs the grass-object collision detection. First, we
extrude the shape of the object along its moving direction according
to the object’s speed (Figure 6). The extrusion represents the area
of grass that directly collides with the object during the simulation
time step. Thus, the amount of extrusion for each simulation time
step ∆ts is ‖~vo‖∆ts, where ~vo is the object’s velocity. Then, we
project the extruded object in world space into its local position in
2D cells of the simulation region to determine the collision area.

} collision area}
2D cells for one patch of grass

vo
vo

Terrain

Figure 6: Determine the collision area.

5.2 Collision response

In this process, we set the bending velocity (~ωg) for clusters of grass
in the collision area. With the new ~ωg, we can update the continuum
simulation in Section 4.

To compute the bending direction, we take into account the shape
of the collision area and the behavior of the object. For example,
the grass on the right side of the object will bend toward the right.
To model this property, we define two types of vectors for each cell

in the collision area, namely shape vector (~MP) and moving vector

(~TP) (Figure 7). We add them to determine the bending direction.

+ =

Shape vectors Moving vectors Bending directions

Figure 7: Assume that the object has a rectangular shape. The cal-
culation of the bending directions for the grass in the collision area.

The shape vectors are created based on the shape of collision
area (Figure 8). Suppose the position of the cell in the collision

area is P. The shape vector ~MP is defined as follows.

~MP =

{

~NP if ~NP · ~vo ≥ 0 and P is at boundary,
~0 if ~NP · ~vo < 0 or P is not at boundary,

(10)

where ~vo is the object’s velocity and ~NP is the normal vector at cell
P.

The moving vectors are created based on the object’s moving
behavior. For example, the object bends the grass in its moving
direction, therefore the grass in the collision area has moving vector

of ~vo

‖~vo‖
(Figure 7). For the cell at P, the moving vector is ~TP, which

is normalized, thus the bending direction ~dgP
is:

~dgP
=

~MP + ~TP
∥

∥

∥

~MP + ~TP

∥

∥

∥

. (11)

The bending speed is computed as follows. We consider the ver-
tical plane in the bending direction of the grass and illustrate our
calculation of angular speed in Figure 8. The grass’s horizontal
speed is the same as the projected object’s horizontal speed onto
the bending direction so. θ is the bending angle of the grass. So,
for the cell at P, we can compute the grass’s tangential speed sg and
the bending velocity ~ωgP

from the object’s horizontal speed so by

sg = socosθ , ~ωgP
= ~dgP

(

sg/(h/cosθ)
)

, (12)

where h is the height from the ground where the collision takes
place. The value of h is set by the animator for each object.

}}S

S0

}}
Bottom segment of grass

Object

h

S0000

g

Figure 8: The calculation of the bending velocity of the grass in the
collision area.

5.3 Interaction with wind

We use two approaches to simulate the wind effects. The first ap-
proach simulates wind such as cyclone or wind caused by an object
in the air, such as helicopter (Figures 11(a) and 11(b)). We treat
this type of wind as an object moving in the grass field. To update
the continuum simulation, we set the location, the shape and the
cell values of the collision area based on the location of the source
of wind, the strength of wind and how the wind bends the grass
(bending directions). For example, as a helicopter moves upwards,
the wind is weaker, the size of the collision area and the bending
speed becomes smaller. To model various types of wind, animators
can design different shape of collision area, the strength of the wind
and the bending directions. Figures 9(a) and 9(b) show two exam-
ples of the shape of the collision area and the bending directions
designed by an animator.

The second approach simulates the effect caused by natural wind
that is similar to the method proposed by Ramraj [18]. We perturb
the values (θ , ~ωg) of the grass, then we use the wave simulation to
propagate the effects. The amount of perturbation can be controlled
using a Perlin noise or any user defined noise.

6 GPU IMPLEMENTATION

All the simulation steps of our method are performed in GPU. The
states of the grass are stored as textures in GPU memory. The sim-
ulation is implemented using standard texture manipulation tech-
niques, such as rendering to texture and texture fetching. If the
shape of the object is concave, we divide it into several convex

Bending directions

(a)

Bending directions

(b)

Figure 9: Two examples of the shape of the collision area and the
bending directions designed by an animator.

shapes. We pass the object’s position, it’s convex shapes and ve-
locity from CPU to GPU.

Simulation region’s representation 2D cells for each patch of
grass is represented as one texture named as simulation texture.
Each cell corresponds to one pixel in this texture. The resolution
of a simulation texture in pixels is the same as the resolution of the
extended 2D cells in a patch. Each pixel of the simulation texture
contains three channels, the first channel stores the cluster of grass’s
bending angle θ and the other two channels store its bending veloc-
ity ~ωg. All these values are floating point numbers.

Collision detection When the object moves one time step, we
determine the collision area based on the object’s velocity and it’s
convex shapes. This calculation is done in vertex shader when we
render the collision area to the simulation textures. The pixels in-
side the collision area represent the clusters of grass colliding with
the object.

Collision response Collision response is to set the ~ωg in the col-
lision area. We implement this process as shading the pixels when
rendering the collision area to the simulation textures. Comput-
ing each pixel’s ~ωg in pixel shader for the whole collision area is
expensive. Therefore, the ~ωg is computed at the vertices of the con-
vex shapes and the Gouraud shading (interpolation) is performed to
shade the remaining pixels.

Direct bending process This process is to add the magnitude of
the 2D vectors represented by the second and third channels (~ωg) to
the first channel (θ) in the pixel shader.

Propagation process The implementation of the wave simula-
tion is based on [21]. The wave simulation uses three textures.
We perform texture fetching and rendering to texture techniques
in pixel shader. The wave function is discretized using the central
difference approximation. To calculate the next state of the simu-
lation c(t +∆t), we need to sample the previous state of simulation
c(t − ∆t) and the current state of simulation c(t). In every time
step, we perform the wave simulation and then switch the textures
by changing their indices. Then, we clear c(t +∆t) and set c(t +∆t)
as the render target.

Animating the cluster of grass Animating the billboard of a
cluster of grass is performed in the vertex shader during the render-
ing. We fetch the values (θ , ~ωg) from the simulation texture and use
them to bend or recover the billboard by moving the vertices of each
segment of the billboard. To examine grass-terrain interaction, we
compare the height of the joints of grass billboards with the height
of terrain, which is also stored as a texture. If the height of a joint
is less that the height of terrain (intersection happens), the joint of
the grass segment will use the height of the terrain as its height.

7 RESULTS AND DISCUSSIONS

Figures 10, 11, 12 and 13 show various simulation results. We
perform our experiments on two GPUs, one is NVIDIA GeForce
8600GTS with 256M DDR3 Memory (GPU-1) and the other one is
ATI Radeon HD4800 with 512M DDR3 Memory (GPU-2) in order
to measure the performance of our method on different classes of

GPUs. We integrated our method in a racing game which was de-
veloped on the DirectX 9.0c platform.

The size of the terrain in the experiment is 15840 feet by 15840
feet and is divided into 88 by 88 patches. Each patch contains 120
by 120 cells. In total, there are more than 100 million clusters of
grass in the terrain. We maintain simulation regions that consist of
225 patches of grass. Each patch (extended 2D cells) of grass is
represented as one simulation texture with the resolution of 128 by
128 pixels. Each pixel contains three channels (R,G,B) and each
channel is 16 bits. Each patch is overlapped with the neighboring
patches in 4 cells length (6 feet) in each direction. For applications
that require a very fast and far propagation (very small λ and very
large c), a larger area of overlapping among patches needs to be set.
Each continuum simulation needs 3 such textures. All together, we
use 675 textures for simulation, which is around 63 M of the GPU
memory.

Maintaining 225 patches (180 feet by 180 feet per patch) as the
simulation regions is usually sufficient to simulate a large interac-
tive grass field. In general, the number of patches maintained for
simulation is decided based on the number of objects in the sim-
ulation and the settings of camera, for example, if the number of
objects in the simulation or the size of the viewing frustum of the
camera is small, less patches are required for simulation.

In the simulation regions, maintaining 4 patches (360 feet by 360
feet) around the camera to perform the natural wind simulation is
usually sufficient. The reason is because the grass outside this area
(360 feet by 360 feet) is usually occluded by nearby grass, and in
the case of ”bird-view”, the camera can see a large area of grass,
however the camera is also far from the terrain. As we mentioned
in Section 4.2, for the patches of grass that are far from the camera,
we use one patch of wind simulation result to tile these patches.

In the game, with these settings, we can simulate grass-grass,
grass-terrain, grass-object and grass-wind interactions on the grass
field with a frame rate around 40 fps on GPU-1 and 100 fps on
GPU-2. Note that the bending effect in our results due to grass-
grass interaction cannot be achieved by simply randomly bending
and recovering the grass.

Comparisons We compare our method with Guerraz et al. [7]
and Orthmann et al. [15] because their methods simulate grass-
object interaction. Compared with [7] and [15], our method can
simulate larger area of grass in real-time. Guerraz et al. [7]
performed grass-object interaction simulation blade by blade and
stored the information of all the affected grass. Thus, the compu-
tational cost is high, especially when multiple objects are moving
in a dense grass field leaving a lot of tracks. We can simulate up
to millions of clusters of grass in real-time (Note that not all of the
simulated clusters of grass are visible at one point of time), while
Orthmann et al. [15] simulates in the order of 60000 clusters of
grass.

Limitations Since our method does not perform an explicit col-
lision detection among the grass, in a highly dense grass field, we
may see the billboards intersecting each other. Usually this prob-
lem can be alleviated by tuning the c, λ and γ values. Currently,
we determine these values experimentally. Since our method does
not perform an explicit complex physics simulation, the computed
grass bending angles and velocities are not accurate. However, the
proposed method can simulate the essential effects of grass field
and this is generally sufficient for real-time applications. Since we
use billboards in the rendering process, the grass field does not look
nice from the top view.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a method for real-time simulation
of grass for games and virtual reality applications such as outdoor
training simulations, driving simulators and flight simulators. We
proposed to model grass field as a continuum. To efficiently model

grass-object, grass-wind interactions and to propagate the effects
(grass-grass interaction) in a grass field, we proposed a procedu-
ral collision detection, response and wave simulation, respectively.
Our method is suitable for GPU implementation. In addition, our
method allows the user to control the simulation effects by setting
several intuitive parameters. In the future, we are interested in im-
plementing our method using CUDA and investigating the perfor-
mance. Some particle and motion blur effects can be added to en-
hance the rendering effects. We also want to determine the optimal
values of the parameters (c, λ and γ values) based on the botanical
property of the grass. Another possible future work is to explore
an alternative modeling approach for grass (rather than billboards)
that can be combined with our current simulation method.

ACKNOWLEDGMENTS

We gratefully thank the reviewers for their constructive comments.
We also thank the coordinator of our submission for the help during
the preparation of the camera-ready version.

REFERENCES

[1] B. Bakay and W. Heidrich. Real-time animated grass. In Proceedings

of Eurographics (short paper) 2002, 2002.

[2] S. Banisch and C. A. Wuthric. Making grass and fur move. Journal

of WSCG 2006, 14:25–32, 2006.

[3] F. Bertails, S. Hadap, M.-P. Cani, M. Lin, T.-Y. Kim, S. Marschner,

K. Ward, and Z. Kačić-Alesić. Realistic hair simulation: animation

and rendering. In SIGGRAPH 2008: ACM SIGGRAPH 2008 Classes,

pages 1–154, New York, NY, USA, 2008.

[4] K. Boulanger, S. N. Pattanaik, and K. Bouatouch. Rendering grass

in real time with dynamic lighting. IEEE Computer Graphics and

Applications, 29(1):32–41, 2009.

[5] P. Decaudin and F. Neyret. Rendering forest scenes in real-time. In

Rendering Techniques 2004: Proceedings of Eurographics Sympo-

sium on Rendering, pages 93–102, Norrkoping, Sweden, 2004.

[6] L. Endo, C. Morimoto, and A. Fabris. Real-time animation of under-

brush. Journal of WSCG 2003 (short paper), 11, 2003.

[7] S. Guerraz, F. Perbet, D. Raulo, F. Faure, and M.-P. Cani. A pro-

cedural approach to animate interactive natural sceneries. In CASA

2003: Proceedings of the 16th International Conference on Computer

Animation and Social Agents, pages 73–78, Washington, DC, USA,

2003.

[8] R. Habel, M. Wimmer, and S. Jeschke. Instant animated grass. Journal

of WSCG 2007, 15:123–128, 2007.

[9] S. Hadap and N. Magnenat-Thalmann. Modeling dynamic hair as a

continuum. Computer Graphics Forum, 20(3):329–338, 2001.

[10] A. F. Jerome Lengyel, Emil Praun and H. Hoppe. Real-time fur over

arbitrary surfaces. In I3D 2001: Proceedings of the 2001 Symposium

on Interactive 3D Graphics, pages 227–232, New York, NY, USA,

2001.

[11] J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional

textures. Computer Graphics (Proceedings of ACM SIGGRAPH 89),

23(3):271–280, 1989.

[12] A. Meyer and F. Neyret. Interactive volumetric textures. In Rendering

Techniques 98: Proceedings of Eurographics Symposium on Render-

ing, pages 157–168, New York, NY, USA, 1998. Springer.

[13] F. Neyret. Synthesizing verdant landscapes using volumetric tex-

tures. RAPPORT DE RECHERCHE-INSTITUT NATIONAL DE

RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE, 1996.

[14] P. H. Oliver Deussen, R. M. Bernd Lintermann, M. Pharr, and

P. Prusinkiewicz. Realistic modeling and rendering of plant ecosys-

tems. In SIGGRAPH 98: Proceedings of the 25th Annual Conference

on Computer Graphics and Interactive Techniques, pages 275–286,

New York, NY, USA, 1998.

[15] J. Orthmann, C. Rezk-Salama, and A. Kolb. GPU-based Responsive

Grass. In Journal of WSCG 2009, 2009.

[16] K. Pelzer. Rendering countless blades of waving grass. GPU Gems,

pages 107–121, 2004.

Figure 10: Example of real-time grass. The track appeared as the
result of the interaction between car and grass.

(a) (b)

Figure 11: A helicopter scene using the bending directions in (a)
Figure 9(a) and (b) Figure 9(b).

(a) (b)

Figure 12: Interaction with a concave object.

[17] F. Perbet and M.-P. Cani. Animating prairies in real-time. In I3D

2001: Proceedings of the 2001 Symposium on Interactive 3D graph-

ics, pages 103–110, New York, NY, USA, 2001.

[18] R. Ramraj. Dynamic grass simulation and other natural effects. Game

Programming Gems 5, pages 411–419, 2005.

[19] W. T. Reeves and R. Blau. Approximate and probabilistic algorithms

for shading and rendering structured particle systems. In SIGGRAPH

85: Proceedings of the 12th Annual Conference on Computer Graph-

ics and Interactive Techniques, pages 313–322, New York, NY, USA,

1985.

[20] C. Wang, Z. Wang, Q. Zhou, C. Song, Y. Guan, and Q. Peng. Dy-

namic modeling and rendering of grass wagging in wind: Natural phe-

nomena and special effects. Computer Animation and Virtual Worlds,

16(3-4):377–389, 2005.

[21] J. Zelsnack. Vertex texture fetch water. NVIDIA SDK White Paper,

2004.

[22] R. Zioma. GPU-generated procedural wind animation for trees. GPU

Gems 3, pages 105–120, 2007.

(a)

(b)

(c)

(d)

Figure 13: Animation sequence with multiple cars.

