
A Simple Method to Animate Vegetation in Images

Using Simulation-guided Grid-based Warping

Kan Chen1,2, Henry Johan2

1Nanyang Technological University, Singapore
2Fraunhofer IDM@NTU, Singapore

Email: kchen1@ntu.edu.sg, hjohan@fraunhofer.sg

Abstract—In this paper, we propose a simple method to
animate vegetation in images. The proposed method enables
users to interactively animate vegetation in real-time. It can
be used to enhance a vegetation photograph or painting with
animated motions as well as to help animators to create cartoon
animation of vegetation. Our method is suitable for simulating
vegetation-wind interaction for a dense vegetation field which
exhibit non-rigid property, especially in cartoon style images.
In our method, wind field is modeled using fluid simulation.
We adopt a harmonic oscillator based on wave simulation
as the numerical model for the dynamics of vegetation. The
velocity generated from the wind field is used to drive the
wave simulation to determine the velocity of vegetation. Based
on the velocity of vegetation, we employ a grid-based warping
approach to animate different types of vegetation such as
grass and trees. As a result, for vegetation in images, we can
simulate grass and trees swaying in wind as well as under water
plants swaying in water. Our method can produce natural-
looking output motions comparable with real cartoons. Users
can interactively control the location of the source, direction
and strength of the wind or water flow and the property of
vegetation on the fly.

Keywords-2D animation; vegetation; fluid simulation; wave
simulation; image wrapping

I. INTRODUCTION

When we are looking at an image, such as a photograph

or a painting, usually the existence of dynamic or moving

objects can be perceived, although the image is indeed static.

A painting looks vivid because we may feel the presence or

hints of motion in it. For instance, if we look at a picture

of a tree, we may think of it swaying in the wind. This

motion effect helps us to better appreciate a photograph or

a painting. On another note, nature scenes (especially veg-

etation scenes) exist in many cartoon animations. However,

they still lack movement in some cases. For example, in

the cartoon “Twins on the Pasture” (Figure 1), the flags

are waving in wind, but the foreground grass remains still.

Viewers may feel uncomfortable with the absence of motion.

Naive approach by manually drawing animation frames

and interpolating them can produce vegetation animation,

but it requires tedious effort. Therefore, a method which

can be used to animate vegetation in images is required.

This method is helpful in enhancing the perception of

photographs or paintings, creating wind visual effects in

movies and assisting animators to create cartoon animations

of vegetation.

Vegetation has very abundant species and has different

properties. We observe that the movements of many types

of vegetation (especially in cartoons) exhibit non-rigid prop-

erty, such as tree crown, dense vegetation field, under water

plant, etc. In their movements, the vegetation’s shape is

perceived as deforming and oscillating, effects such as wave

effect may also exists. For example, in Figure 9, on the left,

when the grass is swaying in wind, its shape is deforming, on

the right, the tree crown moves like a continuum. However,

existing methods of animating vegetation in images ([1], [2])

mainly handle only tree type vegetation with branches whose

motions usually exhibit rigid property. Existing methods

mainly focus on modeling single elements such as grass

blades, leaves and branches, instead of addressing explicitly

the overall appearance of the movements of a vegetation

field, which we believe can be handled in a simpler and

more efficient manner.

(a) (b)

Figure 1. Movie frames from animation “Twins on the Pasture” (c©CCTV
Animation Inc.). Wind is blowing, but the vegetation in foreground remains
still.

Given a single image with vegetation, which can be a

hand-drawn image, painting, cartoon or real photograph, our

target is to animate the vegetation in the image. In general,

for many applications as above, the realization of the effects

of vegetation is more important than the physical accuracy.

Thus, instead of physics simulation we proposed a novel

method that combines a simple dynamics simulation and

a procedural method to model the appearance of non-rigid

movement of vegetation. As a result, using our method, users

can interactively animate various types of vegetation under

different wind condition, ranging from vibrates in breeze

to swaying in strong wind. Our method consists of the

following features:

1) We consider the vegetation field as one continuum.

The wind field generated using fluid simulation, is

used to drive the dynamics of the continuum.

2) Our method heuristically models the appearance of

vegetation’s motion. Many natural motions for vegeta-

tion such as oscillating in breeze or swaying in wind

can be viewed as harmonic oscillation [2], [3]. We

adopt a wave simulation as the numerical model for

the dynamics of vegetation.

3) We employ a grid-based image warping method to an-

imate vegetation in images. The amount of warping is

determined by the velocity of vegetation. Our method

also consider the properties of vegetation such as the

rigidity of the vegetation.

4) Our method is simple and efficient, users can adjust

the results to achieve their desired animation effects

on the fly.

II. RELATED WORK

A. Animation of vegetation in 3D scenes

Animation of grass: Perbet and Cani [4] proposed a

procedural animation controlled by wind primitives. This

work was extended to simulate the interaction between

a vegetation and a moving object [5]. Wang et al. [6]

combined free form deformation and explicit grass-grass

collision detections. Banisch and Wuthric [7] used a mass-

spring system where the masses and springs are attached to

the shell layers. Habel et al. [8] achieved a texture based

animation by distorting the texture lookups. Orthmann et al.

[9] proposed an GPU-based approach to model responsive

grass using a cloth model based on spring constraints. The

conventional way to generate wind effects is by using the

combination of sin and cos wave plus noise as in Pelzer

[10] and Zioma [11]. Ramraj [12] simulated the wind effects

using a simple water wave simulation. Chen and Johan [13]

proposed to consider grass field as a two dimensional grid-

based continuum and shift the complex interactions to the

dynamics of continuum.

Animation of trees: Physics-based methods to animate

trees can achieve convincing results. Stam [14] proposed to

carry out modal analysis to animate a tree. The simulation

is in the frequency domain and spectral method is used to

reduce the computational cost. Chuang et al. [2] also used

a spectral method which includes the motion spectrum of

a damped harmonic oscillator to model the animation of

plants. Habel et al. [3] proposed a physics guided animation

using beam deformation and a similar spectral method as [2].

Diener et al. [15] proposed to compute a wind basis using

modal analysis and project directional wind at run time.

Moreover, Weber [16] presented a fast simulation method

that allows users to interact with trees using a cloth dynamics

model. In general, physics-based methods requires high

computational cost and they lack intuitive direct control.

Procedural method usually is based on noise functions to

heuristically model the appearance of tree’s motion instead

of performing a simulation, for example, Ota et al. [17],

Sousa [18] and Hu et al. [19], [20] used noise functions to

drive the animation. Zhang et al. [21], [22] used pre-recorded

motion graphs to create animation for trees.

Existing methods to animate vegetation in 3D scenes tend

to consider every single elements such as grass blades and

tree branches and they usually focus on one single type

of vegetation either trees or grass. Most recently, Zhao

and Barbič [23] proposed to pre-process plant geometry

to a format suitable for physically based simulation, this

method can be applied to animate many types of vegetation.

Moreover, these methods usually require vegetation’s 3D

structure information, thus they cannot be directly applied

to animate vegetation in 2D images.

B. Animation of vegetation in 2D images

Animating 2D still images: Shinya et al. [1] proposed

to couple physically-based simulation with skeleton-based

morphing techniques to animate plants in 2D images. [2]

proposed to segment an image into layers and synthesize a

motion texture to animate the still image layer by layer.

However, these methods [1], [2] are based on defining

skeletons or line segments as animation model, they are more

suitable for tree type vegetation with branches, whose mo-

tions usually exhibit rigid property. Xu et .al [24] proposed a

method to animate animals’s motion in 2D images by finding

the motion path and apply morphing technique. Schödl et al.

introduced video texture that allows the creation of repetitive

and endless video given a short video sequence [25]. Lin et

al. [26] presented a system that generates high resolution

animated videos from a small number of still images via

the graph and Markov Chain model. These methods requires

sufficient number of pairs of similar frames or images.

Example-based texture synthesis has been widely investi-

gated, it can be applied to synthesize dynamic texture such

as video texture and motion texture (refer to the survey

in [27]). Wei et al. [28] proposed a pixel-based texture

synthesis method to synthesize spatio-temporal textures such

as fire, smoke and ocean waves. Kwatra et al. [29] proposed

a patch-based texture synthesis method based on graph-

cut to synthesize texture. Kwatra et al. [30] proposed an

optimization-based texture synthesis technique guided by

flow to synthesize animated texture. Ma et al. [31] combined

example-based texture synthesis method and fluid simulation

to synthesize motion texture to animate under water plant.

Chen et al. [32] proposed a method to design a 2D time-

varying vector fields which can be applied to animate still

images.

Simulation in cartoons: There are very little works in

simulating plants in cartoons. Fiore et al. proposed to build

realistic 3D geometries of tree as underlying models [33] to

animate cartoon style tree. Haevre et al. applied their method

of animating 3D trees [34] to animate cartoon style trees.

However, these methods depends on the explicit 3D models

of trees.

Hair animation in cartoons has some similarities with veg-

etation animation in cartoons. Eiji et al. proposed simulation

[35] and data-driven [36] approaches. Noble et al. [37] used

NURBS surfaces to model and animate cartoon hair. For

other effects in cartoons, Liao et al. proposed procedural

methods to simulate water [38] and cracking [39] effects.

In general, creating wind effect in cartoons requires a

certain amount of art skills and tedious manual work [35],

thus in most existing cartoon animations, the vegetation

either remains still or moves periodically. We perform a

stable fluid simulation based on Navier-Stokes equations to

generate natural wind field [40], so that no tedious art works

are required to create visually plausible wind effect.

III. OUR METHOD

In this section, we propose our method to animate vege-

tation images. We begin with an overview that describes the

basic idea of our method (Section III-A). We then address

the important sub-problems, namely the segmentation and

compositing (Section III-B), wind model (Section III-C),

simulating dynamics of vegetation (Section III-D), and ani-

mating vegetation in images (Section III-E).

A. Basic idea

We want to generate the following effects efficiently: (1)

shrub oscillating in breeze, tree crown swaying in wind,

under-water plant swaying in water and wave effect of

grass field, (2) when wind passing through a vegetation

field, the plants closer to the wind source move first. The

vegetation-vegetation interaction occurs. The movement is

then propagated to other plants that are away from the

wind source. To achieve the above two effects, we propose

to combine fluid simulation, wave simulation and image

warping methods. The wind field is modeled using a velocity

field. We perform a fluid simulation to generate a natural

wind field, the solver is based on stable fluid [40]. From

this velocity field, we retrieve the wind’s velocity vector

(~V :(Vx, Vy), Section III-C) to compute the dynamics of the

vegetation (~Vp:(Vpx
, Vpy

), Section III-D).

We adopt the wave simulation as the numerical model

for the dynamics of the vegetation. The velocity ~V (Section

III-C) from the wind field is used to initiate the amplitudes of

the wave which represents the velocity of the vegetation ~Vp

(Section III-D). Furthermore, those effects of vegetation field

(swaying, oscillating) have similarities with the behaviors

of wave. The initial amplitudes of wave are set at some

locations. The amplitudes start oscillating and propagating

to nearby locations. Thus, we adopt the wave model and

mimic those essential effects of vegetation field using the

wave simulation.

The animation of the vegetation is based on grid-based

image warping and the amount of warping is computed

based on the vegetation’s velocity ~Vp. Our proposed method

is suitable for animating dense vegetation scene in images

(especially for cartoon style images), such as grass field,

crown of tree and group of bushes whose individual blades

or leaves are dense and staggered together. Users can control

the source, direction and strength of the wind.

B. Segmentation and compositing

We can use existing methods such as [41] to separate

the vegetation to be animated (namely vegetation layers)

from other parts of the input image, namely background.

Another method is to segment the input image using magic

wand tool of c©Adobe c©Photoshop [42]. Then we perform

image inpainting technique [43] to fill the empty area

in the background. For every animated vegetation layer,

image matting method [42] is employed to composite the

vegetation layer with the background. In cartoon animation

pipeline, animation frames usually modeled in layers [44].

In this case, we can integrate our method into this pipeline

by applying it on the vegetation layers.

C. Wind model

We implement a 2D fluid simulator to model wind. After

one simulation time step, we perform vegetation animation

and render one animation frame. The solver [40] solves the

Navier-Stokes equations:

∇ · ~V = 0, (1)

∂~V

∂t
+ (~V · ∇)~V = −

1

ρ
∇p+ ~f, (2)

where ~V is the velocity, p is the pressure, ~f is the external

force, ρ is the density and t is the simulation time. Users can

initiate wind by adding external forces to desired areas using

a mouse. Users can control the frequency, direction and

strength of the external forces. Wind frequency is controlled

by specifying the time interval of adding external forces

during simulation. Users also can add external forces at

any simulation time. External forces add velocities into

desired areas. The velocities’ directions and magnitude are

decided via setting parameters by the users. The velocities’

magnitude is set between 0 to 1, which corresponds to

the minimum and maximum strength of external forces.

Then the velocities are updated by the external forces as

determined by the 2D fluid simulator (Figure 2). The stable

fluid solver ([40]) ensures the magnitude of velocities is

bounded by 1. We impose an open boundary condition,

which means the velocity field is non-reflective at bound-

aries. This generated wind field is used to determine the

vegetation’s dynamics and guide the vegetation animation.

Figure 2. Wind field. The wind source is at the left boundary, and the
wind direction is from left to right.

D. Simulating dynamics of vegetation

The velocity field generated using the fluid simulation, in

general lacks oscillation effects which mimic the swaying

motion of vegetation. Thus it is not suitable to directly

applied the result of fluid simulation as the dynamics of

vegetation. We consider a vegetation layer as one continuum

represented using a 2D grid, and assume the vegetation parts

(such as leaves, blades) are evenly distributed in the contin-

uum. We adopt the wave simulation to model the dynamics

of continuum, and these vegetation parts are the simulation

elements. We consider each simulation element’s velocity
~Vp as the wave amplitude and apply the wave equation and

then verlet integration to compute the simulation element’s

new velocity ~Vp. The wave amplitude (~Vp) is initiated by the

wind velocity (~V) which is obtained using bilinear sampling

from the velocity field generated using the fluid simulator in

Section III-C. The wave functions we used are the same as

in [45] and [13]. For each simulation time t, aVp
(t) is the

accelerations of the wave propagation:

aVp
(t) =

∂2 ~Vp

∂t2
= c2(

∂2 ~Vp

∂x2
+

∂2 ~Vp

∂y2
), (3)

~Vp(t+∆t) = (1 + γ) ~Vp(t)− γ ~Vp(t−∆t)

+ aVp
(t)(∆t2), (4)

By using the wave simulation, we provide a convenient way

to control the vegetation animation. We can tune the wave

damping factor, which reflects the softness of vegetation, by

setting the γ (smaller γ: softer, greater γ: more rigid) and

control how fast a vegetation propagates the wind effect by

setting the wave speed factor c (smaller c: slow propagation,

greater c: fast propagation). In our experiments, γ is in the

range of [0.01, 1] and c is in the range of [1, 10].

E. Animating vegetation in images

To generate the motion of vegetation, we define uniform

grids over a vegetation layer and apply inverse warping to

deform it. The grid’s size sx, sy is defined based on the

size of parts of vegetation, for example for vegetation with

smaller leaves/blades, the size of grid is smaller; as well

as the rigidity of the vegetation, for example for less rigid

vegetation, the size of grid is smaller. The position of the

four corners (x0, y0), (x1, y1), (x2, y2), (x3, y3) of each grid

cell over original vegetation layer is displaced (Figure 3).

At each frame, we compute the amount of displacement

~n by Equation 5 using the vegetation’s velocity ~Vp which

is obtained by bilinear sampling from the wave simulation

results in Section III-D.

A vegetation layer may have a perspective viewing angle,

for example the vegetation image may be captured from top

or side, thus we want to control the amount of deformation

at a certain direction, for example, if grass is viewed from

the side, it is unlikely for it to move up and down. We

also want to control the amount of deformation at a certain

region, for example, the vegetation far away should have less

deformation compared to the near one. Thus we introduce

a scale factor ~λ to control the amount of displacement ~n.

All of ~Vp, ~λ and ~n consist horizontal (x) and vertical (y)

components:

nx = λxRVpx
(t)∆t, (5)

ny = λyRVpy
(t)∆t,

R =

{

1 if every parts can move,

(l
h
)r otherwise,

(6)

where ∆t is the simulation time step, ~λ is set with respect to

the grid cell’s size, l is the distance to the horizon position

of vegetation layer, h is the height of the vegetation layer,

and r ∈ [0, 10] is the rigidity parameter that controls the

amount of displacement with respect to the distance to the

vegetation’s horizon, whose position is fixed and determined

by the users.

If the vegetation’s root can be seen, the horizon position

is set as the root part of the vegetation, which is usually the

bottom of the vegetation layer (Figure 3). Greater r means

the vegetation is more constrained by the root position so it

exhibits less movement and is more rigid. If the vegetation’s

root cannot be seen, for example, vegetation field is viewed

from top with a perspective angle, the horizon position

is set at the top of the vegetation layer (Figure 4). As

such, the vegetation further to the viewer exhibit much less

movement than the vegetation closer to the viewer. h and l

are computed by finding the distance to the bottom (Figure

3) or top (Figure 4).

Since our method can animate vegetation in real-time,

the user can change the values of parameters on the fly

to adjust the results. In the case that the vegetation field

is very large and not homogeneous, we can segment it into

different layers and animate each layer separately. However,

this requires extra work for segmentation, thus we propose

a simpler control by defining a scale map (Figure 4). The

scale map stores the magnitude of scale factor (~λ) for the

vegetation layer, for example, the magnitude of ~λ of the

vegetation region further to the viewer is smaller than the

vegetation region closer to the viewer, which means the

vegetation further to the viewer exhibit less movement. We

directly set the magnitude of ~λ in Equations 5 and 6 based on

the scale map in order to refine the velocity of the vegetation.

� � � � � � ���� � 	 � �
 	 � �� � � � �
 � � � � � � � �
 � � �� �
 � �

 � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� } �
} � � � � ! � "

Figure 3. Grid-based warping. Left: Original vegetation layer with warped
2D grids. Right: Warped vegetation layer with 2D grids. Vegetation image
is from www.colourbox.com (c©Colourbox Educational).

}
$ % & ' $ (

}) *
Figure 4. Example of scale map. (a) Original vegetation scene. (b) Scale

map, darker region means smaller magnitude for scale factor ~λ. Vegetation
image is from www.iwallscreen.com.

Using displacement ~n, the four corners of grid cells in

original vegetation layer are displaced in the opposite direc-

tion of the velocity, since our warping method is based on

inverse warping. The new positions of the four corners after

displacement (x
′

0
, y

′

0
), (x

′

1
, y

′

1
), (x

′

2
, y

′

2
), (x

′

3
, y

′

3
) (Figure 3)

are computed as follows.

(x
′

, y
′

) = (x, y) + (−nxsx,−nysy), (7)

For point (i, j) in the warped vegetation layer, we compute

its corresponding point (i
′

, j
′

) in the original vegetation

layer using bilinear interpolation based on its coordinates

in grid cell (u, v):

(i
′

, j
′

) = (1− v)
(

(1− u)(x
′

0
, y

′

0
) + u(x

′

0
, y

′

0
)
)

+ v
(

(1− u)(x
′

1
, y

′

1
) + u(x

′

2
, y

′

2
)
)

. (8)

We sample the value at (i
′

, j
′

) at the original vegetation

layer as the value of point (i, j) (Figure 3).

Frame 0 Frame 10 Frame 15 Frame 20

Figure 5. Result animation using the proposed method using a cartoon
(c©Teemu Korhonen) as an input, the wind direction is from left to right.
The most effected regions are highlighted in the second row.

Frame 0 Frame 10 Frame 15 Frame 20

(a) (b)

Figure 6. Result animation using the proposed method using a photograph
(c©Moonglowlily) as an input, the wind direction is from right to left. (a)
is one frame of the animated photograph sequence, for clarity, one part of
the animated photograph sequence is enlarged and shown in (b), in (b) the
most affected regions are highlighted in the second row.

IV. RESULTS AND DISCUSSIONS

The proposed method can be applied to animate veg-

etation in several types of input images, such as cartoon

(Figures 5 and 8), photograph (Figure 6) and sketch (Figure

7). We applied our method to animate the types of vegetation

that exhibit non-rigid property, such as dense vegetation:

grass field (Figure 5), shrub field (Figures 6), tree crown

(Figures 7 and 9, Right) and under water vegetation: sea

wheat (Figure 8). We implemented our method on a laptop

with Intel Core i7 M620 @2.67Ghz CPU, 4.0GB Memory

and Nvidia NVS3100M GPU on the DirectX 9.0c platform.

With a 2D fluid simulator (64 by 64 grids) [40], vegetation

in images can be animated at 60FPS. We also compare our

result with real cartoon and video (Figures 9). The input

is one frame of the cartoon or video. Please refer to the

supplementary video for the animation sequences.

In non-rigid motions for dense vegetation, the vegetation’s

shape is perceived as deforming and oscillating, effects such

as wave effect may also exists. Our method can capture

these non-rigid motions for vegetation in images such as

the shape deformation for grass in a cartoon animation

(Figure 9, Left) and the wave effect for tree crown in a

video: the branches and leaves on the right bend first, then

the bending propagates from right to left (Figure 9, Right).

For the types of vegetation that exhibit non-rigid property,

our method can achieve visually plausible result. Especially

for cartoons, such as animation sequences from “Natsume

Yuujin-Chou” (“The Natsume’s Book of Friends”) (c©Yuki

Frame 0 Frame 10 Frame 15 Frame 20

(a) (b)

Figure 7. Result animation using the proposed method using a sketch
(c©HUISJ.COM) as an input, the wind direction is from right to left. (a)
is one frame of the animated sketch sequence, for clarity, one part of the
animated sketch sequence is enlarged and shown in (b), in (b) the most
affected regions are highlighted in the second row.

Frame 5 Frame 10 Frame 15 Frame 20

Figure 8. Result animation using the proposed method using a cartoon
image from “The Adventures of Little Carp” (c©CCTV Animation Inc.) as
an input. The most effected regions are highlighted in the second row.

Midorikawa/Nihon Ad Systems Inc./Natsume Yuujin-Chou

Project), our method achieves comparable results. However,

due to copyright issues, we cannot present them in the paper.

Users can initiate wind by adding external forces to

desired areas using a mouse and set parameters to con-

trol the frequency, direction and strength of the external

forces. Users also can add external forces at any simulation

time. The appearance of the vegetation animation can be

controlled by specifying the grid’s size (sx, sy), the scale

factor (λx, λy) and the rigidity parameter (a). Our method

can animate vegetation in real-time, as a result users can

change the values of parameters on the fly to adjust the

animation.

Our technique may perform less well for the type of veg-

etation that has obvious skeleton shapes such as branches.

Because when a tree is swaying in wind, the shape of

branches is hardly change, however, the shape of branches is

deformed in our method. Therefore, in our experiments, we

segment branches as the background. Grid-based warping

is simple but not sufficient to simulate the occlusion effect

for vegetation under the influence of wind (for example,

the leaves or blades may occlude each other). Thus, our

method is more suitable to capture the overall appearance

of vegetation’s motion rather than the detail motion of

parts of vegetation. For example, our method performs

better for cartoon style images whose structure is simple, or

vegetation (such as shrub) oscillating in light breeze, in these

cases less non-occlusion artifacts can be noticed. For some

vegetation oscillating in light breeze, the vegetation’s motion

is perceived as each local part of it is slightly vibrating

and the propagation and waving effects may not be obvious.

Thus in this case, each local part may exhibit non-correlated

motion and the wind direction may not be obvious.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a method for generating

vegetation animation for an input image. The proposed

method is based on fluid simulation, wave simulation and

image warping. Our method does not require tedious work

and art skills to create many key frames. This method

addresses the non-rigid movements of vegetation in im-

ages. Our method is suitable for simulating the non-rigid

movements of vegetation in images, especially for dense

vegetation in cartoons interacting with wind. As a result, we

can simulate grass, shrub, tree crown swaying in wind and

aquarium plants swaying in water flow. Users can control

the source, direction and strength of the wind or water flow

and the property of vegetation on the fly. In the future, we

plan to explore other types of deformation method besides

the grid-based method to handle more types of vegetation

and effects. We also plan to handle the collisions among

vegetation layers. Another future work is to animate other

natural elements in images, such as water, cloud and fire.

VI. ACKNOWLEDGMENT

We gratefully thank the reviewers for their construc-

tive comments. This research was supported by Fraunhofer

IDM@NTU, which is funded by the National Research

Foundation and managed through the multi-agency Interac-

tive & Digital Media Programme Office hosted by the Media

Development Authority of Singapore.

REFERENCES

[1] M. Shinya, M. Aoki, K. Tsutsuguchi, and N. Kotani, “Dy-
namic texture: physically based 2d animation,” in SIGGRAPH
’99: ACM SIGGRAPH 99 Conference abstracts and applica-
tions, 1999, p. 239.

[2] Y.-Y. Chuang, D. B. Goldman, K. C. Zheng, B. Curless, D. H.
Salesin, and R. Szeliski, “Animating pictures with stochastic
motion textures,” ACM Transactions on Graphics, vol. 24,
no. 3, pp. 853–860, 2005.

[3] R. Habel, A. Kusternig, and M. Wimmer, “Physically guided
animation of trees,” vol. 28, no. 2, pp. 523–532, 2009.

[4] F. Perbet and M.-P. Cani, “Animating prairies in real-time,” in
I3D ’01: Proceedings of the 2001 Symposium on Interactive
3D Graphics, 2001, pp. 103–110.

Real cartoon Our result with highlight Real video Our result with highlight

Figure 9. Left: Comparing our result with a real cartoon “Twins on the Pasture” (c©CCTV Animation Inc.). Right: Comparing our result with a real
video (from www.youtube.com). The wind direction is from bottom right to up left. In the last column of each example, the most affected regions of our
result are highlighted.

[5] S. Guerraz, F. Perbet, D. Raulo, F. Faure, and M.-P. Cani, “A
procedural approach to animate interactive natural sceneries,”
in CASA ’03: Proceedings of the 16th International Confer-
ence on Computer Animation and Social Agents, 2003, pp.
73–78.

[6] C. Wang, Z. Wang, Q. Zhou, C. Song, Y. Guan, and Q. Peng,
“Dynamic modeling and rendering of grass wagging in wind:
Natural phenomena and special effects,” Computer Animation
and Virtual Worlds, vol. 16, no. 3-4, pp. 377–389, 2005.

[7] S. Banisch and C. A. Wuthric, “Making grass and fur move,”
Journal of WSCG 2006, vol. 14, pp. 25–32, 2006.

[8] R. Habel, M. Wimmer, and S. Jeschke, “Instant animated
grass,” Journal of WSCG 2007, vol. 15, pp. 123–128, 2007.

[9] O. Jensn, C. R. Salama, and A. Kolb, “GPU-based responsive
grass,” in Journal of WSCG 2009, 2009.

[10] K. Pelzer, “Rendering countless blades of waving grass,”
GPU Gems, pp. 107–121, Randima Femando, 2004.

[11] R. Zioma, “GPU-generated procedural wind animation for
trees,” GPU Gems 3, pp. 105–120, Hubert Nguyen, 2007.

[12] R. Ramraj, “Dynamic grass simulation and other natural
effects,” Game Programming Gems 5, pp. 411–419, Kim
Pallister, 2005.

[13] K. Chen and H. Johan, “Real-time continuum grass,” in VR
’10: Proceedings of the 2010 IEEE Virtual Reality Confer-
ence, 2010, pp. 227–234.

[14] J. Stam, “Stochastic dynamics: Simulating the effects of
turbulence on flexible structures,” Computer Graphics Forum,
vol. 16, no. 3, pp. 159–164, 1997.

[15] L. B. L. R. Julien Diener, Mathieu Rodriguez, “Wind pro-
jection basis for real-time animation of trees,” Computer
Graphics Forum, vol. 28, no. 2, pp. 20–28, 2009.

[16] J. Weber, “Fast simulation of realistic trees,” Computer
Graphics and Applications, IEEE, vol. 28, no. 3, pp. 67–75,
2008.

[17] S. Ota, T. Fujimoto, M. Tamura, K. Muraoka, K. Fujita, and
N. Chiba, “1/f β noise-based real-time animation of trees
swaying in wind fields,” in CGI ’03: Proceedings of Computer
Graphics International, 2003., 2003, pp. 52–59.

[18] T. Sousa, “Vegetation procedural animation and shading in
Crysis,” GPU Gems 3, pp. 373–385, Hubert Nguyen, 2007.

[19] S. Hu, T. Fujimoto, and N. Chiba, “Pseudo-dynamics model
of a cantilever beam for animating flexible leaves and
branches in wind field,” Comput. Animat. Virtual Worlds,
vol. 20, no. 2-3, pp. 279–287, 2009.

[20] S. Hu, N. Chiba, and D. He, “Realistic animation of interac-
tive trees,” The Visual Computer, vol. 28, no. 6-8, pp. 859–
868, 2012.

[21] L. Zhang, Y. Zhang, Z. Jiang, L. Li, W. Chen, and Q. Peng,
“Precomputing data-driven tree animation,” Computer Anima-
tion and Virtual Worlds, vol. 18, no. 4-5, pp. 371–382, 2007.

[22] L. Zhang, Y. Zhang, W. Chen, and Q. Peng, “Real-time
simulation of large-scale dynamic forest with gpu,” in APC-
CAS’08: Proceedings of the 2008 IEEE Asia Pacific Confer-
ence on Circuits and System., 2008, pp. 614–617.

[23] Y. Zhao and J. Barbič, “Interactive authoring of
simulation-ready plants,” ACM Trans. Graph., vol. 32,
no. 4, pp. 84:1–84:12, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2461912.2461961

[24] X. Xu, L. Wan, X. Liu, T.-T. Wong, L. Wang, and C.-S. Le-
ung, “Animating animal motion from still,” ACM Transactions
on Graphics, vol. 27, no. 5, pp. 117:1–117:8, 2008.

[25] A. Schödl, R. Szeliski, D. H. Salesin, and I. Essa, “Video
textures,” in SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques,
2000, pp. 489–498.

[26] Z. Lin, L. Wang, Y. Wang, S. Kang, and T. Fang, “High
resolution animated scenes from stills,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 13, no. 3,
pp. 562–568, 2007.

[27] L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk, “State of the
Art in Example-based Texture Synthesis,” in Eurographics
2009, State of the Art Report, EG-STAR, 2009, pp. 93–117.
[Online]. Available: http://hal.inria.fr/inria-00606853/en/

[28] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-
structured vector quantization,” in SIGGRAPH ’00: Proceed-
ings of the 27th annual conference on Computer graphics and
interactive techniques, 2000, pp. 479–488.

[29] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick,
“Graphcut textures: image and video synthesis using graph
cuts,” ACM Transactions on Graphics, vol. 22, no. 3, pp.
277–286, 2003.

[30] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture
optimization for example-based synthesis,” ACM Transactions
on Graphics, vol. 24, no. 3, pp. 795–802, 2005.

[31] C. Ma, L.-Y. Wei, B. Guo, and K. Zhou, “Motion field texture
synthesis,” ACM Transactions on Graphics, vol. 28, no. 5, pp.
110:1–110:8, 2009.

[32] G. Chen, V. Kwatra, L.-Y. Wei, C. D. Hansen, and E. Zhang,
“Design of 2d time-varying vector fields,” IEEE Transactions
on Visualization and Computer Graphics, vol. 18, no. 10, pp.
1717–1730, 2012.

[33] F. Di Fiore, W. Van Haevre, and F. Van Reeth, “Rendering
artistic and believable trees for cartoon animation,” in CGI
’03: Proceedings of Computer Graphics International 2003,
2003, pp. 144–151.

[34] W. V. Haevre, F. D. Fiore, and F. V. Reeth, “Physically-
based driven tree animations,” in Eurographics Workshop on
Natural Phenomena, 2006.

[35] E. Sugisaki and Y. Yu, “Simulation-based cartoon hair anima-
tion,” in WSCG ’05: Proceedings of the International Confer-
ence in Central Europe on Computer Graphics, Visualization
and Computer Vision, 2005, pp. 117–122.

[36] E. Sugisaki, Y. Kazama, S. Morishima, N. Tanaka, and
A. Sato, “Hair motion cloning from cartoon animation se-
quences,” Computer Animation and Virtual Worlds, vol. 17,
no. 3-4, pp. 491–499, 2006.

[37] P. Noble and W. Tang, “Modelling and animating cartoon hair
with nurbs surfaces,” in CGI ’04: Proceedings of the 2004
Computer Graphics International, 2004, pp. 60–67.

[38] J. Liao, J. Yu, and J. Patterson, “Modeling ocean waves
and interaction between objects and ocean water for cartoon
animation,” Comput. Animat. Virtual Worlds, vol. 22, no. 2-3,
pp. 81–89, 2011.

[39] J. Liao and J. Yu, “Procedural models for cartoon cracks and
fractures animations,” The Visual Computer, vol. 28, no. 6-8,
pp. 869–875, 2012.

[40] J. Stam, “Stable fluids,” in SIGGRAPH ’99: Proceedings
of the 26th Annual Conference on Computer Graphics and
Interactive Techniques, 1999, pp. 121–128.

[41] C. Rother, V. Kolmogorov, and A. Blake, “”grabcut”: inter-
active foreground extraction using iterated graph cuts,” ACM
Transactions on Graphics, vol. 23, no. 3, pp. 309–314, 2004.

[42] c©Adobe, c©Photoshop CS5.1. Adobe System Inc., 2010.

[43] A. A. Efros and T. K. Leung, “Texture synthesis by non-
parametric sampling,” in ICCV ’99: Proceedings of the In-
ternational Conference on Computer Vision, 1999, pp. 1033–
1040.

[44] K. Laybourne, The Algorithms and Principles of Non-
photorealistic Graphics: Artistic Rendering and Cartoon An-
imation. Three Rivers Press, 1998.

[45] J. Zelsnack, “Vertex texture fetch water,” NVIDIA SDK White
Paper, 2004.

